bannerbannerbanner
полная версияПрирода боится пустоты

Дмитрий Александрович Фёдоров
Природа боится пустоты

Полная версия

Форма и размеры Земли у Аристотеля

Совсем иначе Аристотель рассуждает, когда говорит о форме Земли. Умозрительные и туманные аргументы уступают место вполне рациональным доводам. Сперва отмечается, что при стремлении тяжелых объектов к центру мира должен в результате образоваться достаточно правильный шар, причем даже наличие начальных неравномерностей формы будет со временем сглажено действием больших частей на меньшие. Данное объяснение хоть и основано на неверном понимании физических принципов, но, тем не менее, опирается на достаточно глубоко проработанную механическую теорию. Впрочем, далее Аристотель переходит к прямым наблюдениям и отмечает, что при лунных затмениях край земной тени всегда оказывается идеально круглым, независимо от того, как именно повернута Земля по отношению к Луне. Подобное возможно лишь в том случае, если тень отбрасывается объектом в форме шара.

Также Аристотель отмечает, что даже при относительно небольшом путешествии на север или юг картина ночного неба заметно меняется: часть звезд исчезает, зато появляются новые. Некоторые звезды, если наблюдать их в северных широтах, никогда не заходят, но если отправиться южнее, что они начнут опускаться за горизонт. Данный аргумент, как легко понять, сам по себе доказывает лишь округлость меридиана в известной грекам части мира, но вместе с предыдущим доводом составляет вполне достаточное доказательство того, что Земля без сомнений шарообразна.

Не совсем ясно, отчего Аристотель не упомянул известное любому моряку явление, заключающееся в том, что удаляющийся корабль постепенно скрывается за горизонтом: сначала корпус, а затем и мачты, что можно объяснить лишь кривизной земной поверхности. В любом случае после Аристотеля почти никто из образованных людей (кроме отдельных оригинальных мыслителей) уже не оспаривал, что Земля – шар. Насчет того, что Луна имеет такую же форму, особых сомнений у греков тоже не было, поскольку это было понятно по смене ее фаз.

Завершая астрономические рассуждения в книге «О небе», Аристотель добавляет, что Земля достаточно мала и, согласно расчетам некоторых математиков (сам он даже не попытался произвести каких-либо вычислений по этому вопросу), имеет диаметр 400 000 стадиев. Мы не знаем, кому принадлежит данная оценка размеров нашей планеты, но указанная величина почти вдвое превышает реальное значение (примерно 20 060 километров против истинных 12 742 километров). В этом отношении даже занятно, что Земля почему-то представлялась Аристотелю «небольшой».

Имеет смысл сказать несколько слов и о метрологических воззрениях Аристотеля, который резко разграничил созданный из эфира надлунный мир и непостоянный подлунный мир, наполненный четырьмя элементами: ближе к центру находится земля, над ней вода, затем – воздух и, выше прочих, – огонь. Однако четких границ между элементами нет, и будет неправильно думать, будто они расположены слоями. Если горячие и сухие испарения поднимутся в верхнюю часть атмосферы (где преобладает огонь), то они увлекаются ее вращением (которое, очевидно, возникает от контакта с нижней лунной сферой) и оттого вспыхивают. Так возникают падающие звезды, метеоры и полярные сияния. Все теории о том, что эти объекты могут прилетать из далекого космоса, Аристотель отвергает, поскольку небеса неизменны и являют собой образец вечного кругового вращения. Если же испарения поднимаются слишком высоко, то загораются уже под воздействием Солнца, и тогда образуются кометы. Впрочем, это происходит редко, поскольку чаще всего вещество, из которого могли бы возникнуть кометы, тратится на образование Млечного Пути.

Недостатки астрономической системы с концентрическими сферами

Судьба теории гомоцентрических сфер оказалась двоякой. Профессиональные астрономы очень быстро отказались от нее, поскольку при всей своей сложности она обладала малой точностью и не позволяла производить расчеты. Однако среди тех философов, которые мало наблюдали за небом и меньше увлекались вычислениями, долго сохранялась уверенность, что именно гомоцентричная система является наиболее правдоподобной, а потому требует лишь некоторых дополнительных улучшений. Что же касается фантастических соображений Аристотеля о природе метеоров, комет и Млечного Пути, то они столь прочно закрепились в западной мысли, что даже Галилей упорно придерживался этих взглядов.

Так или иначе, но на протяжении многих веков Аристотель, по сути, оставался единственным автором, попытавшимся обобщить, критически осмыслить и систематизировать весь объем существующих тогда знаний о природе. Сегодняшних читателей наверняка смутит, что он пытался понять устройство Вселенной, опираясь в первую очередь на эстетические, этические и лингвистические критерии, а реальные факты использовал не как опору всех рассуждений, но лишь как украшение или отправную точку. Однако именно этот «недостаток» во многом и определил популярность и притягательность Аристотеля для античной и – особенно – средневековой мысли, которая получала наглядное подтверждение того, что вышколенный разум, вооруженный одним лишь здравым смыслом и обыденным жизненным опытом, способен постигнуть всё, что пожелает, включая и устройство целого космоса.

Кроме всего сказанного, гомоцентричная теория имела и еще один куда более важный недостаток. В самом деле, лишние пересечения эклиптики или недостаточно точную ширину ретроградных петель легко объяснить неверным подбором числа сфер либо ошибочным выбором их наклонения. Нет никаких теоретических ограничений, мешающих сконструировать такую сложную комбинацию круговых движений, которая смогла бы достаточно точно описать видимую траекторию планеты. Разумеется, это может оказаться чересчур трудоемким делом, непосильным для ручного вычерчивания, но принципиально физическая система выглядит рабочей. Важно здесь, однако, то, что для вложенных сфер планеты всегда находятся на одном и том же расстоянии от Земли, а в таком случае их яркость не должна изменяться (напомним, что греки полагали небесные тела неизменными), но реальные наблюдения говорят нам, что она меняется, причем очень сильно. Эллины знали об этом и понимали, что дело тут, скорее всего, именно в изменении расстояний, а потому неоднократно указывали на неспособность концентрических сфер спасти явления. Даже если учесть, что планеты светят отраженным, а не собственным светом (греки понимали это только в отношении Луны), мы не сможем объяснить колебания их яркости сменой фаз и переменной расстояния до Солнца.

Вращение Земли у Гераклида

Поскольку общие взгляды греков на то, как устроена Вселенная, явно расходились с реальностью, то неизбежно возникало желание предложить иное решение, и одним из тех, кто серьезно взялся за проблему соответствия теории с фактами, был Гераклид Понтийский. Об этом человеке известно немногое: он родился в черноморской греческой колонии, но переселился в Афины, где обучался в Академии у Платона, и даже, возможно, руководил ей, пока учитель уезжал строить идеальное государство на Сицилии. При всем сказанном, Гераклид посещал пифагорейские школы и слушал лекции Аристотеля, что, безусловно, позволило ему стать одним из самых образованных людей своего времени. Он много писал и был весьма популярным античным автором, но ни одна из его книг не сохранилась до наших дней. От Симпликия мы знаем, что Гераклид объяснял суточное вращение звезд, планет, Луны и Солнца тем, что сама Земля каждый день оборачивается вокруг своей оси с запада на восток (эта смелая и немыслимая для Платона и Аристотеля гипотеза почти наверняка возникла благодаря пифагорейскому влиянию). Также предполагалось, что Меркурий и Венера вращаются по небольшим кругам вокруг Солнца, и именно поэтому никогда не удаляются от него на значительное расстояние. Само Солнце, а также Луна, Марс, Юпитер и Сатурн, как и раньше, по-прежнему двигались вокруг Земли.

Введенные изменения существенно упрощали систему Евдокса-Каллипа-Аристотеля: становились ненужными все суточные сферы, а также исключалась искусственная подгонка для согласования вращения Солнца, Меркурия и Венеры, причем расстояния от Земли до внутренних планет теперь оказывались переменными. Предложенные улучшения могли дать очень многое, но, судя по всему, Гераклид не делал никаких расчетов, и вполне довольствовался тем, что спасает явления лишь качественно. Его взгляды на устройство вселенной представляли собой причудливую смесь различных учений: он называл космос божественным разумом, а планеты – богами, но каждую из них при этом полагал отдельным миром, подобным Земле, со своей атмосферой. Аристотель нигде не ссылается на Гераклида, но едва ли можно было просто умолчать о столь оригинальной астрономической системе, поэтому вполне вероятно, что к моменту написания «О небе» она еще не была опубликована или представлена публике. Тем не менее, идея о суточном вращении Земли, а также об обращении Венеры и Меркурия вокруг Солнца не были забыты и время от времени появлялись у некоторых античных и средневековых авторов, имея даже и своих немногочисленных приверженцев.


На самом деле греки знали, что видимые размеры Луны изменяются. Этот факт можно легко заметить, просто попытавшись заслонить ее дощечкой на вытянутой руке: в разные периоды времени ширина такой дощечки будет отличаться на несколько процентов. Кроме того во время полных солнечных затмений Луна иногда заслоняет Солнце целиком, а иногда затмение оказывается кольцеобразным, то есть Луна не всегда может заслонить весь солнечный диск. Всё это однозначно говорит о том, что расстояние до Луны не всегда одинаково, более того, Симпликий сообщает, будто даже Аристотель признавал данный факт. Почему Гераклид не стал объяснять изменение размеров Луны – неизвестно.

Различие взглядов на физику и астрономию у греков


Комментируя «Физику» Аристотеля, Симпликий приводит крайне любопытную цитату из трудов жившего в I веке до нашей эры математика и астронома Гемина, который разбирал отличия между физикой и астрономией. Безо всякого преувеличения можно сказать, что в данной цитате отражена вся суть и всё понимание того, что в действительность представлял собой философский взгляд эллинов на мир.

 

По мнению Гемина, физика занимается изучением природы, сил и качеств (то есть общих отношений, которые не сводятся к числу), а также вопросом возникновения и смерти космоса. Астрономия же, напротив, не касается данных вопросов, но посвящена расположению небесных тел, изучению их формы, размеров и расстояний до них, а также затмений и соединений светил, причем не только качественно, но и количественно, используя для вычислений геометрию и арифметику. Даже если физик и астроном изучают одно и то же явление, то первый будет искать общие (метафизические) причины, а второй – конкретные способы объяснения.

Иными словами, если астроному требуется объяснить неравномерность блужданий Солнца, Луны или планет, то следует взять общие принципы устройства космоса у физиков – небесные движения просты, однородны и равномерны, – а затем изучить, сколькими различными способами возможно представить рассматриваемое явление в виде комбинации простых причин. При этом нет необходимости учитывать, какие тела по своей природе неподвижны, а какие – перемещаются, но достаточно лишь подобрать такие гипотезы, которые согласуются с небесными явлениями. Если сформулированная астрономическая теория позволяет отображать и рассчитывать реальные движения светил, то она хороша, независимо от того, являются ли принятые гипотезы физически верными.

В этой же цитате отмечается, что предположение Гераклда Понтийского о движении (вращении) Земли вполне правомочно, ведь оно спасает явления. При этом не совсем ясно, считал ли Гемин, что Гераклид действительно верил, будто Земля вращается вокруг своей оси, либо принимал данное допущение исключительно для упрощение расчетов.

Определение размеров Луны и Солнца, а также расстояний до них. Аристарх Самосский


Понимание того, что расстояние от Земли до планет не остается постоянным, привело к очевидному вопросу о том, каково же оно на самом деле. Одним из тех, кто попытался отыскать правильный ответ, был Аристарх Самосский, который впервые в истории сумел правильным образом использовать математику для количественной оценки характеристик окружающего мира.

Аристарх обучался у Стратона Физика – третьего руководителя афинского Ликея, – а затем перебрался в Александрию, где работал всю оставшуюся жизнь. Свой самый знаменитый труд «О величинах и расстояниях (Солнца и Луны)» Аристарх написал в стиле «Начал» Евклида (вероятно, они оба хорошо знали друг друга), используя в качестве исходных постулатов четыре астрономических наблюдения:

1. Когда Луна выглядит как полукруг (фаза первой четверти) угол между направлениями на нее и на Солнце составляя 87° (в оригинале у Аристарха указана величина 29/30 прямого угла).

2. Во время солнечного затмения диск Луны в точности закрывает диск Солнца, то есть они имеют одинаковые угловые размеры.

3. Во время лунного затмения ширина земной тени вдвое больше ширины лунного диска (разумеется, измерить саму земную тень проблематично, но можно заметить равенство промежутков времени, за которые Луна полностью покрывается тенью, затем находится закрытой, и – выходит из тени).

4. Угловой размер Луны составляет 2°.

Рассмотрим поочередно все эти наблюдения и поглядим, к каким выводам смог прийти Аристарх.

Предположим для начала, что Земля T, Луна L и Солнце S достаточно малы в сравнении с расстояниями между ними, и поэтому мы можем не учитывать положение наблюдателя на Земле. Это достаточно грубое допущение, особенно если учесть, что мы пока еще ничего не знаем об искомых величинах, но в действительности серьезных ошибок мы не допустим. Обозначим расстояние от Земли до Луны за HL, а до Солнца – за HS. Диаметр Луны обозначим как DL, а диаметр Солнца – как DS.

Первое наблюдение можно трактовать следующим образом: если мы с Земли видим ровно половину Луны, то в треугольнике TLS угол при вершине L должен быть равен в точности 90°, а расстояние TS между Землей и Солнцем будет являться гипотенузой прямоугольного треугольника. В этом случае мы можем записать следующее тригонометрическое отношение

Итак, мы получили, что Солнце расположено в 19,11 раз дальше от Земли, чем Луна. Поскольку во времена Аристарха еще не существовало привычных для нас тригонометрических таблиц и десятичных дробей, то он остановился на том, что искомое число больше 19, но меньше 20.

В расчете мы пренебрегли не только размером самой Земли, но и тем фактом, что расстояние до Луны изменяется в некоторых пределах. В принципе это действительно не так страшно, поскольку для самой первой оценки погрешность окажется незначительной. Куда важнее то, что в описанной ситуации реальный угол между направлениями на Луну и Солнце равен не 87°, а 89,853°, а это уже критично. Произвести точное измерение такого угла античными средствами было невозможно, однако в данном конкретном случае погрешность менее чем в 3° дает нам колоссальную ошибку, поскольку на самом деле Солнце находится почти в 390 раз дальше от Земли, чем Луна. Конечно, даже полученное Аристархом число говорило о том, что вселенная весьма велика, ведь за столь удаленным Солнцем расположены и другие планеты, но с другой стороны двадцатикратная ошибка оставляла космос относительно компактным местом, тогда как в действительности он огромен, и Земля попросту теряется на его просторах.


Перейдем теперь ко второму наблюдению, показывающему, что видимые угловые размеры Луны и Солнца практически одинаковы. Из чертежа очевидно подобие большого и малого треугольников, отношение высот которых нам уже известно. Значит, можно записать следующую пропорцию

Иными словами, у Аристарха получилось, что диаметр Солнца в 19,11 раз больше лунного, тогда как реальное отношение (это уже должно быть понятно) близко к 390. В данном случае погрешность оказалась точно такой же – двадцатикратной – однако, результат, тем не менее, заставлял задуматься: по каким причинам Солнце настолько больше Луны. Античная философия не могла сказать по этому поводу ничего вразумительного, хотя, разумеется, реальные размеры Солнца и вовсе поставили бы ее в тупик.


Третье наблюдение потребует чуть более сложных вычислений. Проведем конус от земной тени через двойной лунный диск, и обозначим расстояние от Луны до вершины конуса как H0. Несложно видеть, что мы получили сразу три подобных треугольника, поэтому можем записать следующие пропорции

Отсюда путем достаточно трудоемких, но тривиальных алгебраических преобразований можно получить, выражение для диаметра Земли

Теперь вспомним, что выше мы уже установили равенство

из которого можно вывести, например, что

Таким образом, диаметр Земли можно выразить только через диаметры Солнца и Луны

откуда получаем

и

В результате оказалось, что диаметр Земли в 1/0,149 = 6,7 раз меньше солнечного и в 2,85 раза больше лунного. Что касается Земли и Луны, то истинное соотношение их размеров равно 3,67, и в данном случае полученный результат достаточно точен, однако лишь благодаря малой чувствительности нашей формулы к величине DS (если Солнце очень большое, то мы всегда получим результат близкий к 3). Что же касается соотношений размеров Земли и Солнца, то истинная величина равна не 6,7, а 109,1, то есть Аристарх ошибся более чем в 16 раз. Впрочем, даже полученное значение оказалось весьма красноречивым: Солнце по сравнению с Землей выглядело просто огромным. Более того, Аристарх усилил эффект своего открытия, указав, что в рассматриваемом случае соотношение объемов окажется равным уже 1 к 301.

По словам Архимеда и Плутарха (в самом сохранившемся тексте «О величинах и расстояниях…» об этом ничего не говорится), данный результат натолкнул Аристарха на мысль, что именно Земля обращается вокруг Солнца, а не наоборот, ведь немыслимо, чтобы большое тело обращалось вокруг столь малого. Поскольку этот вывод опирался единственно на эстетический аргумент о том, как якобы должны соотноситься движения тел различной величины, и противоречил всем греческим представлениям об устройстве мира, то теорию о подвижной Земле не принял ни один из античных астрономов. Исключением оказался только некий Селевк из Селевкии, о котором, собственно говоря, больше ничего не известно.


Характерно, что сами расчеты Аристарха никто не оспаривал (более того, их лишь уточняли), однако статус математики в иерархии древней мысли был существенно иным, нежели сегодня. Сама по себе она ценилась очень высоко, но результаты вычислений и построений, полученные даже на основании очень точных наблюдений, не могли стать основанием для пересмотра общей картины мира. Правильное использование геометрии заключалось в том, чтобы узнавать абсолютные истины об идеальных объектах, а вовсе не о материальных объектах. Более того, отказ от размещения неподвижной Земли в центре Вселенной автоматически приводил к необходимости признать неверными все знания о природе, которые имелись у греков. Можно было не соглашаться с механикой Аристотеля и его концепцией естественного движения (этот момент особенно легко оспорить, если заранее отказаться от разделения мира на подлунный и надлунный), но практически никто не сомневался в том, что если бы Земля действительно двигалась, то мы бы обязательно ощущали ее полет. Все соглашались, что подброшенные вверх тела должны отставать от движущейся планеты, но в реальности они всегда падают на свои изначальные места, даже если были закинуты очень высоко. В этой связи требовалось не просто показать, что Земля вращается вокруг Солнца, но также перестроить всю динамику, равно как и переосмыслить устройство космоса. К временам Галилея, когда потребовалось создать работающую теорию полета пушечного ядра, эта проблема стала актуальной и востребованной. Для греков же проблема движения и размеров мира оставалась исключительно спекулятивной.

Касательно последнего вопроса Аристарх все же сделал некоторые шаги, поскольку заключил, что расстояние до звезд невероятно огромны по сравнению с размером земной орбиты. Неизвестно, как именно это обосновывалось, но, скорее всего речь шла об отсутствии заметного годичного параллакса звезд. В самом деле, если Земля обращается вокруг Солнца, то звезды должны смещаться то в одну, то в другую сторону по мере того, как будет меняться наше положение, однако ничего подобного не наблюдается. Объяснить это можно так: расстояние до звезд настолько велико, что параллакс оказывается чрезвычайно таким малым и его попросту невозможно обнаружить никакими средствами. Любопытно, что Аристотель, напротив, полагал отсутствие звездного параллакса доказательством неподвижности Земли. Архимед, от которого мы и знаем о воззрениях Аристарха, судя по всему, все же считал Землю расположенной в центре мира: по крайней мере, такой вывод можно сделать по скудным описаниям изготовленного им небесного глобуса, вывезенного римским полководцем Марцеллом из захваченных Сиракуз.

В любом случае Аристарх не стал (не сумел или не захотел) заниматься глубокой проработкой гелиоцентрической системы. Он не строил подробных трехмерных моделей и не пытался определить, как будут выглядеть траектории небесных тел при наблюдении с движущейся Земли (задача в целом вполне посильная для талантливого античного геометра, который, безусловно, весьма удивился бы полученным результатам). Похоже, что Аристарх не отнесся к своему открытию с должной серьезностью, выдвинув его просто как одно из соображений, сопровождающих геометрические выкладки. Другие астрономы и вовсе увидели лишь любопытный курьез, но никак не повод для размышлений. До работ Коперника все космические модели, в которых предполагалось поступательное движение Земли, продолжали называть пифагорейскими, а с именем Аристарха связывали лишь гипотезу о суточном вращении Земли, которое оказывалось необходимым для объяснения ежедневного оборота звездной сферы.

 

Вернемся, однако же, к геометрическим построениям. Пока что мы отдельно определяли соотношения расстояний и соотношения размеров. Чтобы увязать их между собой нам понадобится четвертое наблюдение. Поскольку принято, что угловой размер Луны составляет 2°, то можно выразить ее диаметр как

Иными словами, согласно вычислениям Аристарха получилось, что Луна удалена от нас на 1/0,035 = 28,57 своих диаметров. Истинное значение, однако же, составляет 110,4 лунных диаметров, и такая большая неточность связана с очень грубой оценкой углового размера Луны. На самом деле он равен не 2°, а всего лишь 0,519°. Этот момент не совсем ясен, поскольку Архимед в своем «Исчисление песчинок» приводит для этой величины значение 0,5°, ссылаясь именно на Аристарха. Где именно допущена ошибка – неизвестно.

Из полученных Аристархом данных несложно вычислить, что расстояние от нас до Луны составляет 10 земных диаметров (в реальности – около 30), а до Солнца – 191 земной диаметр (в действительности в среднем это значение равно 11600). При этом важно помнить, что все результаты получены в пропорциях и не содержат ни одного значения, выраженного в реальных единицах длинны.

Поскольку во времена Аристарха не существовало привычной для нас алгебры и тригонометрии, то ему пришлось самостоятельно разработать некоторые способы вычислений, однако выкладки и построения все равно оказались чрезвычайно громоздкими, а результаты оценивались в достаточно широких диапазонах. Так, например, диаметр Солнца в оригинале определялся в пределах от 251/27 до 361/60 диаметров Земли. Тем не менее, математическая составляющая работы Аристарха была выдающейся для своего времени, а расчетные схемы – безупречными даже по современным критериям. Разумеется, грубые ошибки в исходных данных заметно сказались на полученных числах (угловой размер Луны можно было даже тогда измерить гораздо точнее), но Аристарху в любом случае не пришла в голову мысль проверить, насколько его метод чувствителен к возможным погрешностям наблюдений.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58 
Рейтинг@Mail.ru