bannerbannerbanner
полная версияПрирода боится пустоты

Дмитрий Александрович Фёдоров
Природа боится пустоты

Полная версия

Другие математические работы Архимеда. Ракушки. Коноиды и сфероиды

Не менее интересные результаты были получены Архимедом в работе «О линиях в форме ракушек», название которой обычно переводят как «О спиралях». В этом труде рассматривается кривая, образованная равномерным движением точки по равномерно же вращающейся прямой. В результате радиус-вектор ρ данной точки возрастает пропорционально углу поворота ϕ, а уравнение полученной спирали в полярных координатах имеет вид

ρ = ϕ.

Основная цель Архимеда – определить площадь первого витка, которая, как оказалось, составляет треть от площади круга с радиусом, равным радиус-вектору спирали в конце первого оборота. Доказывается этот факт следующим образом.

Разделим круг на n равных секторов и обозначим за R радиус-вектор спирали в конце первого витка. Тогда для первого сектора ρ = R/n, для второго – ρ = 2·R/n, для третьего – ρ = 3·R/n, и так далее вплоть до последнего сектора, на котором, что очевидно, ρ = n·R/n=R. Теперь впишем в спираль (левый чертеж) и опишем вокруг спирали (правый чертеж) дополнительные сектора так, как это показано на рисунке. Определим площади описывающих спираль заштрихованных секторов (правый чертеж). Площадь первого самого маленького такого сектора равна π·ρ2/n = π·R2/n3, площадь второго сектора равна π·22·R2/n3 и так далее вплоть до последнего заштрихованного сектора, площадь которого равна π·n 2·R2/n3.

Просуммировав площади всех секторов и вынеся за скобку множитель π·R2/n3, мы получим

(π·R2/n3)·(12 + 22 + 32 +…+ n2),

причем в правой скобке получается ряд, сумма которого, как знал Архимед (и мы говорили об этом выше), при бесконечно большом n равна n3/3. Таким образом, для правого чертежа получается, что площадь всех описывающих спираль заштрихованных секторов всегда больше π·R2/3 (предельный переход не совершался, поэтому нигде не говорилось, что дуги рассматриваемых секторов когда-либо совпадут со спиралью).

Аналогичным образом показывалось, что площадь всех вписанных в спираль секторов всегда меньше π·R2/3, причем разность между суммарными площадями описанных и вписанных секторов можно сделать сколь угодно малой, а, значит, площадь витка спирали не может быть ни больше, ни меньше π·R2/3 , что и требовалось доказать. Впрочем, константу π Архимед не использует, и просто говорит о том, что площадь первого витка спирали равна трети площади первого круга.


Похожим образом Архимед строит решения и в своей замечательной работе «О коноидах и сфероидах», которая также была отправлена Досифею в Александрию. Из предисловия мы узнаем, что данное сочинение является результатом многолетних трудов, потребовавших немалого усердия. Главной их целью являлось нахождение объемов сегментов эллипсоида, параболоида и гиперболоида вращения. Архимед показывает, что этот объем полностью определяется высотой и площадью основания рассматриваемых сегментов.

Впрочем, ни одного из указанных терминов Архимед еще не употреблял: эллипс он называл сечением остроугольного конуса, параболу – сечением прямоугольного конуса, а гиперболу – сечением тупоугольного конуса, причем о второй ее ветви он еще не знал. Соответственно, параболоид вращения у Архимеда назван «прямоугольным коноидом», а гиперболоид – «тупоугольным коноидом». Судя по всему, данные тела ранее никем не рассматривались. При этом для эллипсоида Архимед, вслед за атомистами, употребляет термин «удлиненный сфероид», а не «остроугольный коноид», как можно было бы предположить.

Не станем рассматривать все содержание данной работы, а наметим лишь общий план доказательств Архимеда, предоставив любознательному читателю возможность самостоятельно завершить все необходимые выкладки, поскольку они осуществляются уже разобранным выше способом и требуют лишь техники.

Объемы рассматриваемых тел определяются следующим образом. Вокруг сегмента описывается ступенчатое тело, состоящее из n поставленных друг на друга цилиндров. Затем в этот же сегмент вписывается аналогичное ступенчатое тело. Ниже на чертеже все указанные тела показаны одновременно. Высоты всех цилиндров равны между собой и составляют 1/n от высоты всего сегмента H. Легко увидеть, что вписанное тело отличается от описанного лишь на один самый большой нижний цилиндрик, причем с увеличением n эта разница может быть сделана сколь угодно малой. Понятно, что объемы двух ступенчатых тел представляют собой верхний и нижний пределы объема рассматриваемого сегмента.

Поскольку высоты всех цилиндров равны, то их объемы относятся как площади оснований, то есть – как квадраты радиусов оснований или же, в нашем случае, квадраты ординат. Поскольку античные определения конических сечений фактически представляли собой аналоги наших современных канонических уравнений, то можно было записать сумму для всего объема.

Так, для параболоида (если примем уравнение параболы как y = b·x2) квадраты ординат равны y/b, а объем ступенчатого тела в таком случае определялся как

V = (H/n)·π·(H/n+2·H/n+3·H/n+…+n·H/n)/b = (H2/n2)·π·(1+2+3+…+n)/b.

Здесь мы вновь получили уже знакомый нам ряд, сумма которого при увеличении n стремится к n2/2, поэтому теперь можно записать

V= 0,5·π·(H2/b).

Из уравнения параболы следует, что квадрат радиуса основания сегмента R2 = H/b, поэтому окончательно запишем

V= 0,5·π·H·R2.

Таким образом, мы получили, что объем сегмента параболоида вращения равен половине от объема описанного цилиндра с высотой H и радиусом основания R, либо же 3/2 от объема вписанного конуса.

Соотношения для гиперболоида и эллипсоида находятся по схожему принципу.

Вычисление Архимедом числа пи


Выше мы уже неоднократно говорили, что Архимед нигде не использует обозначения для числа π. Кроме того, можно заметить, что он никогда не вычисляет непосредственно площади и объемы (как это делаем мы по формулам), но всегда находит лишь их отношения к каким-либо иным фигурам и телам. Собственно под квадратурой параболы нужно понимать просто сведение площади сегмента параболы к площади известного квадрата, либо же треугольника, который легко привести к квадрату. В античные времена «правильной» считалась лишь такая математика, которая рассматривала только соотношения, не касаясь вопроса об истинных размерах и количествах.

Однако Архимед, с его склонностью к механике, всегда испытывал повышенный интерес к вычислениям и всему, что греки относили к логистике. Сегодня любой школьник способен безо всяких технических средств произвести на бумаге достаточно сложные расчеты, пользуясь нехитрыми правилами для обращения с десятичными числами. Поскольку мы уже ознакомились с греческой геометрической алгеброй, и поэтому читатель должен понимать, сколь нетривиальными являлись все приведенные выше расчеты в их оригинальном виде. Однако особенно впечатляющим является числовое решение, полученное Архимедом в его работе «Об измерении круга».

Сочинение начинается с теоремы, утверждающей, что площадь круга равна площади такого прямоугольного треугольника, у которого один катет равен радиусу круга, а другой – длине окружности. Об этом знали еще атомисты, рассматривавшие круг, как бесконечноугольник, составленный из множества узких треугольников с вершинами в центре. Понятно, что высоты таких треугольников неотличимы от радиусов, а сумма их площадей, очевидно, как раз и равна площади такого прямоугольного треугольника, о котором говорит Архимед. Впрочем, он, разумеется, не мог рассуждать подобным образом. Вместо этого, как уже должно быть ясно, сперва предполагалось, что площадь круга отличается от указанного значения на какую-либо величину, а затем, последовательным удвоением числа сторон вписанных и описанных многоугольников, показывалась абсурдность подобного допущения.

Пока что достаточно просто, но полученное решение не говорило ничего конкретного о реальной величине исследуемой площади. В самом деле, всё ещё оставался открытым вопрос о длине окружности, которую требовалось каким-то образом вычислить. Поэтому основная теорема книги утверждает, что отношение окружности к ее диаметру всегда больше 310/71, но меньше 310/70. Данные значения получились из сравнения периметров описанного и вписанного 96-ти угольников.

Конечно же, Архимед не занимался вычерчиванием фигуры с 96 одинаковыми сторонами, а вместо этого нашел изящный способ вычислить их периметр. Так, он начал с описанного шестиугольника (левая часть чертежа) и выделил половину его стороны AB (правая часть чертежа, сверху). Обозначим радиус окружности (сторона AO) как R. Поскольку треугольник ABO прямоугольный, причем угол при вершине B равен 60°, то

AO/AB = 30,5/1 ≈ 265/153 и BO/AB = 2/1 = 306/153.

При этом Архимед умалчивает, откуда он взял приближение для . Сам ли он вычислил, что дробь 265/153 дает достаточно хорошую точность, либо же это уже было известно – об этом нет ни единого слова, как будто извлечение корней являлось для греков чем-то заурядным.

 

Далее Архимед использует два соображения. Во-первых, в рассматриваемом треугольнике биссектриса, опущенная из вершины O, всегда будет давать нам половину стороны правильного многоугольника с удвоенным числом сторон. То есть, если каждый раз проводить биссектрисы, то AC будет полустороной правильного 12-ти угольника, AD полустороной правильного 24-х угольника и так далее. Во-вторых, биссектриса всегда делит основание на отрезки, пропорциональные боковым сторонам своего угла.

Теперь уже несложно вычислить длину отрезка AC. В самом деле, поскольку

ВС/AC = BO/AO, то (ВС+AC)/AC = (BO+AO)/AO, откуда

(BO+AO)/AO = AB/AC или же (BO+AO)/AB = AO/AC ≈ (306+265)/153 = 571/153.

Таким образом, мы нашли отношение радиуса окружности к полустороне правильного 12-ти угольника. Чтобы двигаться дальше, необходимо также вычислить длину биссектрисы OC. Воспользовавшись теоремой Пифагора, можно записать

OC2 = AC2+AO2 или же OC2/AC2 = (AC2+AO2)/AC2 ≈ (1532+5712)/1532 ≈ 349 450/1532.

Архимед сразу дает готовый ответ OC/AC ≈ 5911/3/153, не объясняя, каким способом он извлек квадратный корень из 349 450.

Опустим остальные долгие выкладки, поскольку механизм дальнейших расчетов ничем не отличается от уже рассмотренного. Архимед последовательно показывает, что отношение радиуса к полусторонам правильных 24-х, 48-ми и 96-ти угольников равно соответственно 11621/8/153, 23391/4/153 и 46731/2/153. И каждый раз не дается никаких разъяснений, каким образом извлекаются корни из огромных чисел, как будто это достаточно простая и всем понятная операция.

Теперь уже возможно записать отношение всего периметра 96-ти угольника к диаметру окружности (двум радиусам), которое окажется большим, чем

(153·2·96)/(2·46731/2) > 31/7 = 310/70 = 3,142857… .

Для определения нижнего предела Архимед вписывает в круг правильный шестиугольник и рассматривает далее только треугольник ONM, в котором последовательно строит биссектрисы внутреннего угла, получая каждый раз стороны многоугольников с удвоенным числом сторон (правая часть чертежа, снизу). Не будем повторять все преобразования пропорций, которые производил Архимед, предоставив любознательному читателю возможность повторить эту работу самостоятельно (необходимые вспомогательные линии присутствуют на чертеже). В итоге для вписанного 96-ти угольника отношение периметра к диаметру круга составило 310/71 = 3,140845… . Тут в процессе вычислений также безо всяких пояснений извлекались корни из огромных чисел.

Точность оценки числа π, которую сумел получить Архимед: 3,140845 < π < 3,142857, безусловно, превосходила любые возможные практические потребности того времени. Кроме того очень важно отметить тот факт, что задача вообще была сформулирована в терминах определения точности получаемого результата. Такая постановка проблемы являлась совершенно нехарактерной для античной математики и встречалась разве что в астрономии, где исследовались конкретные тела и расстояния, а не абстрактные идеальные объекты.

«Конические сечения» Аполлония


Сочинение «Об измерении круга» вызвало полемику со стороны другого известного геометра – Аполлония Пергского, который был на 20-25 лет моложе Архимеда, но практически не уступал ему в математическом даровании. Более того, их спор, вероятно, имело еще и политическую окраску.

Аполлоний родился в середине III века до нашей эры на юго-восточном побережье Малой Азии в городе Перге (небольшом поселении крупного государства со столицей в Пергаме), но большую часть жизни провел в Александрии, где сперва обучался у учеников Евклида, а затем постепенно приобрел славу заслуженного авторитета в геометрии и астрономии. Неизвестно, успел ли он пересечься в Музее с Архимедом, но друзьями они точно не являлись: в своей обширной переписке Архимед вообще ни разу не упоминает молодого талантливого современника. Главной работой Аполлония стали «Конические сечения», где ему удалось собрать и систематизировать всё известное по данному вопросу. Книга оказалась столь хороша, что очень быстро вытеснила все предшествующие труды по коническим сечениям – ни один из них, включая работу Евклида, не сохранился. Вплоть до нового времени «Конические сечения» Апполония считалась классическим пособием, которое следовало изучать после «Начал».

В конце жизни Аполлоний вернулся на родину, чтобы занять должность придворного математика царя Аттала I, который учредил у себя дом мудрости и библиотеку подобные Александрийскому Музею. Причина, по которой в Средиземноморье возник еще один центр учености, заслуживает отдельного внимания.

Мы уже видели, что эллины пытались совместными усилиями остановить стремительную римскую агрессию. Македония, Карфаген, Ахейский союз и Сиракузы решительно выступили за независимость греческого мира. Впрочем, наивно было ожидать, что множество непрерывно враждовавших средиземноморских государств сумеют забыть все разногласия и самоотверженно объединиться в решительный час. Птолемеи вообще не захотели открыто выступить против могущественного противника, а Этолийский союз и Пергам посчитали выгодным принять сторону Рима, дабы отомстить своим былым обидчикам. Действуя совместно с римлянами, Аттал I нанес ряд поражений Филиппу V Македонскому и тем самым обеспечил долгий период процветания своему государству: в обмен на полную политическую покорность Рим отдавал Пергаму те земли, которые регулярно отбирал у Селевкидов.

Между усилившимся Пергамом и Александрией сразу же наметился экономический и политический антагонизм. Аталл желал распространить свое влияние на обширные территории Малой Азии, что побудило его превратить свою столицу в центр греческой культуры. При царском дворе создали условия для работы выдающихся философов и начали собирать внушительную коллекцию рукописей. Видя это, Птолемеи запретили вывоз папируса за пределы Египта, дабы их собственная библиотека и дальше оставалась непревзойденной. С образовавшимся дефицитом писчих материалов требовалось что-то сделать, и пергамские ремесленники усовершенствовали древнюю технологию выделки кожи. Так изобрели пергамент, и библиотека Аталла стала наполняться книгами, а дом мудрости – философами.

Именно в этот новый центр эллинистической мудрости, где образовалась кроме прочего и блестящая математическая школа, перебрался Аполлоний. Здесь им были написаны «Конические сечения», из которых четыре книги известны нам в греческом оригинале, три – только лишь в арабском переводе, а восьмая – утеряна, хоть и имеются ее реконструкции по кратким описаниям у других авторов.


В своем труде Аполлоний прежде всего дает общее определение кривых второго порядка: он берет произвольный конус и рассекает его под любым углом, причем рассматривает обе конические полости, что позволяет, наконец, получить вторую ветвь гиперболы. Из стереометрического определения выводятся симптомы кривых – словесные описания, аналогичные современным уравнениям.

Чтобы вывести симптом параболы, рассмотрим для начала конус рассеченной плоскостью так, что GL параллельна образующей AB. Точка L произвольно выбирается на оси сечения, точка K лежит на краю сечения, а полухорда LK параллельна основанию конуса. Проведем через L также и отрезок MN параллельный BC. Очевидно, что точки M, N и K лежат на одной окружности, а, значит, LK2 = ML·NL.

Теперь запишем следующие пропорции

ML/GL = BC/AC, откуда ML = GL·BC/AC;

NL/GA = BC/AC, откуда NL = GA·BC/AC.

Объединим все три соотношения вместе и получим

LK2 = GL·GA·BC2/AC2.

Заметим, что отрезок GL является переменным расстоянием от вершины сечения G до проекции точки K на ось сечения (до точки L), то есть, фактически – одной из координат. Переменный отрезок LK является второй координатой для точек рассматриваемой кривой. Комбинация GA·BC2/AC2 остается постоянной и зависит лишь от геометрии самого конуса, поэтому Аполлоний для удобства вводит отрезок GF = GA·BC2/AC2 (в нашем понимании это просто числовой коэффициент). В результате имеем окончательное уравнение вида

LK2 = GL· GF.

Если мы введем обозначения y = LK, x = GL, 2p = GF, то получим каноническое уравнение параболы в декартовых координатах y2 = 2p·x.

Разумеется, в «Конических сечениях» данный симптом описывается словесно: квадрат, построенный на полухорде LK, должен равняться прямоугольнику, построенному на GF (должны равняться заштрихованные площади, как это показано на чертеже в центре). Иными словами, парабола на плоскости строится следующим образом. Проводится горизонтальная ось. В начале координат (точке G) строится перпендикулярный оси отрезок GF. Далее к каждой координате L на оси прикладывается такой квадрат со стороной LK, площадь которого равна прямоугольнику со сторонами GF и GL. Само название «парабола» происходит от введенного Аполлонием термина παραβολή (приложение), поскольку построение точек этой кривой сводится к задаче о приложении.

Аналогичным образом для эллипса Аполлоний получает уравнение y2 = 2p·xx2·p/a, причем p и a являются константами. Иными словами квадрат, построенный на полухорде LK, равен прямоугольнику, построенному на GF, но уменьшенному на некоторую величину (итоговой является площадь с мелкой штриховкой на чертеже справа). Таким образом, мы имеем задачу о приложении с недостатком. Отсюда происходит и название «эллипс», поскольку греческое έλλειψις означает «недостаток».

Задача о нахождении точек гиперболы сводится к приложению с избытком (ύπερβολή переводится как «избыток»), и описывается уравнением y2 = 2p·x + x2·p/a, то есть квадрат, построенный на полухорде LK, равен прямоугольнику, построенному на GF с некоторой дополнительной прибавкой (вся заштрихованная площадь на чертеже слева).

Далее Аполлоний рассматривает конические сечения в алгебраической логике (хотя и продолжает рассуждать геометрически), исследуя свойства полученных уравнений и показывая инвариантность введенных симптомов относительно преобразований систем координат. Хоть вся работа ведется в отрыве от стереометрии (конус был нужен лишь для получения параметров), но при этом доказывается полное тождество новых уравнений и старых определений.

В последующих частях книги Аполлоний описывает особые точки и линий на исследуемых кривых: фокусов, асимптот, полюсов и поляр, пересечений и касательных. Определяются площади сегментов, строятся нормали и эволюты, определяются максимумы и минимумы, а также решаются различные геометрические задачи.

Соперничество Архимеда и Аполлония


Почти сразу Аполлония обвинили в плагиате: якобы он просто переработал неопубликованные труды Архимеда. При этом уже в предисловии «Конических сечений» указывается, что автор по большей части лишь систематизировал и обобщил открытия своих предшественников. Отсюда можно заключить, что скандал раздували греческие математики, невзлюбившие Аполлония за его переход на сторону римской партии. В действительности же ситуация была скорее обратной, и он скромно преуменьшал собственные достижения, а не приписывал себе чужие.

Судя по всему, в реальности имело место здоровое заочное соперничество двух великих математиков. Так, в ответ на работы Архимеда «Об измерении круга» и «Исчисление песчинок» (посвященной в частности наименованию больших чисел), Аполлоний написал сочинение с сатирическим названием «Ускорение родов», где иным путем нашел более точное значение для π, а также предложил достаточно удобную систему обозначения больших чисел, продемонстрировав заодно виртуозные способности к вычислениям.

В ответ Архимед опубликовал свою знаменитую задачу о быках, которая хоть и была отправлена Эратосфену и другим александрийским математикам, но косвенным адресатом явно подразумевала Аполлония. Условия этой занимательной задачи были следующими. Бог Гелиос пасет на Сицилии четыре стада: белое, черное, рыжее и пестрое. В каждом стаде присутствуют быки и коровы. При этом известно, что

– число белых быков равно (1/2+1/3) от черных быков и рыжим быкам;

– число черных быков равно (1/4+1/5) от пестрых быков и рыжим быкам;

 

– число пестрых быков равно (1/6+1/7) от белых быков и рыжим быкам.

– число белых коров равно (1/3+1/4) от темного стада;

– число черных коров равно (1/4+1/5) от пестрого стада;

– число пестрых коров равно (1/5+1/6) от рыжего стада;

– число рыжих коров равно (1/6+1/7) от рыжего стада.

Требуется исчислить число голов в стадах Гелиоса. По мнению Архимеда, каждого, кто сможет отыскать решение самостоятельно, уже нельзя будет называть невеждой.

Мы сразу привели формализованное условие в стандартном современном виде, тогда как оригинальный текст представляет из себя стихотворение, в котором даже после перевода не так-то просто разобраться. Сама задача сводится к системе семи уравнений с восемью неизвестными, а наименьшее из возможных решений дает общий размер всех четырех стад, ни много ни мало, в 50 389 073 головы. Произвести все кропотливые вычисления, несомненно, было непросто, но, тем не менее, – вполне реально для античных математиков.

Для тех, кто желает прослыть настоящим мудрецом, Архимед приводит дополнительное условие: во-первых, общее количество белых и тёмных быков представляет собой квадратное число, а, во-вторых, общее количество пёстрых и рыжих быков – треугольное число. В такой постановке задачу удалось решить лишь в XX веке с помощью компьютера. Суммарное число голов скота в данном случае выражается числом из 206 545 десятичных знаков.

Мы не знаем, получилось ли у Эратосфена и Аполлония либо у кого-нибудь другого справиться с полной задачей, но, вероятнее всего, решения не было даже у самого Архимеда. В то время просто отсутствовали способы хотя бы обозначить числа таких больших порядков, не говоря уже о вычислениях.


Неизвестно, каким образом Аполлоний сделал все свои открытия. Его книги написаны ясно и логически строго, но вот понять ход мыслей непросто – он полностью сокрыт за виртуозными построениями геометрической алгебры. Нигде не указывается, как именно автор пришел к необходимости делать именно такие построения, а не какие-либо иные. Вероятно, как и в случае с Архимедом, использовался какой-то упрощенный метод математического анализа, чтобы заранее понимать, к какому результату необходимо прийти. Хотя работы Аполлония активно изучались и комментировались, но его исследования не получили, да и не могли получить, почти никакого развития. Конические сечения применялись античными, а затем и мусульманскими учеными в основном для решения кубических уравнений, а также в оптике параболических зеркал. Все это не имело особого практического значения. Лишь в XVII веке, когда Ферма и Декарт создали аналитическую геометрию, теория конических сечений получила, наконец, свое развитие в работах Галилея, Кеплера и Ньютона.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58 
Рейтинг@Mail.ru