bannerbannerbanner
полная версияПрирода боится пустоты

Дмитрий Александрович Фёдоров
Природа боится пустоты

Полная версия

Математические механизмы. Объемные места. Эратосфен

Безусловно, «Начала» являются вершиной античной математической мысли, но с их появлением греки, разумеется, не перестали делать новых открытий. Выше уже говорилось, о популярности ряда задач, которые хоть и не требовали недозволенного обращения к неделимым, но при этом не могли быть решены с помощью циркуля и линейки. Иными словами, решения этих задач не являлись корнями уравнений первой и второй степеней. Циркуль и линейка, как мы помним, оказались бессильны при рассмотрении проблемы удвоения куба, а также построения трисекции угла и квадратуры круга. Данные задачи потребовали создания новых более сложных инструментов и приспособлений.

Одним из таких математических механизмов стал изобретенный главой Александрийской библиотеки Эратосфеном прибор под названием мезолябия (улавливатель средних величин). Это достаточно простое, но одновременно хитроумное устройство состояло из трех одинаковых тонких прямоугольных пластинок с проведенной на них диагональю. Пластинки требовалось расположить одну поверх другой и выдвигать нижние из-под верхних. Для удобства можно было использовать специальные деревянные направляющие.

Мезолябия позволяла находить средние пропорциональные отрезки, и мы уже показали, что это автоматически давало решение задачи об удвоении куба. В самом деле, если сдвинуть пластинки так, чтобы точки B, K и M оказались на одной прямой, то легко показать, что

откуда после несложного преобразования получаем

Теперь, если мы сумеем подобрать такое положение пластинок, чтобы отрезок LX составлял ровно половину от AB, то, очевидно, получим GM3 = 2·LX3, то есть GM будет стороной удвоенного куба со стороной LX. Делосская задача решена!


Поиск этого решения долгое время интересовал честолюбивого Эратосфена. В юности он получил блестящее образование в Александрии и Афинах, а его выдающаяся энциклопедическая эрудиция способствовала тому, что в 245 году до нашей эры египетский царь Птолемей III Эвергет пригласил ученого к своему двору. Через несколько лет Эратосфен стал руководителем Александрийской библиотеки и занялся ее активным развитием. Новые тексты не только приобретались за огромные деньги, но и силой изымались для переписывания с приходящих в порт кораблей (обратно на руки выдавалась не оригинальная рукопись, а сделанная с нее копия). Отдельная группа специалистов изучала исключительно поэмы Гомера, сличая и трактуя каждое слово и каждую букву в различных вариантах записанных текстов.

Одновременно с этим Эратосфен не прекращал исследований по астрономии и математике. Сконструировав мезолябию и убедившись в правильности своего решения, он поставил благодарственный мраморный столб в храме высшего придворного божества (им являлся основатель династии Птолемей I), а также подробно изложил свое открытие в письме к Птолемею III, которое сохранилось вплоть до наших дней.

О других же математических сочинениях Эратосфена осталось крайне мало информации: в полном объеме известен лишь небольшой отрывок, где дается простейший способ составления таблицы простых чисел (известное нам еще со школы «решето»). Об остальных текстах ученого мы знаем по упоминаниям, и можем восстановить их содержание только косвенно. Так, произведение «Платоник» было посвящено пропорциям, гармонии и музыке, занимавшим огромное место в учении самого Платона, полагавшего, будто эти вещи учат людей пониманию превосходства геометрического равенства (когда права соответствуют достоинству человека) над арифметическим (когда у всех одинаковые права).

Также именно со слов Эратосфена известно, что Платон не признавал метод объемных мест, когда решения задач отыскиваются с помощью пересечения трехмерных тел. Подобный подход низводил математику к бренному чувственному миру, вместо того, чтобы возвышать наш разум до общения с вечным и бестелесными идеями. Эта авторитетная точка зрения надолго укрепилась в эллинских умах, и сам Эратосфен, похоже, полностью ее разделял. Именно поэтому вместо конических сечений он предлагал компромиссный вариант – подвижные механизмы, при использовании которых вполне можно было обходиться построением лишь прямых и окружностей. В таком случае точки пересечения кривых второго порядка отыскивались завуалированным образом, не требующим прибегать непосредственно к построению эллипсов, парабол или гипербол. Данный метод был известен грекам задолго до Эратосфена, который в лучшем случае оказался первым, кто действительно начал конструировать и реально использовать такого рода устройства. Впрочем, всякое движение также не одобрялось Платоном, поэтому механические приборы считались нежелательными и допускались лишь только, если иные способы не давали решения.


Самый простой геометрический механизм выглядит удивительно просто: на линейке отмечают две точки, отдаленные на заданное расстояние, затем в определенное место вставляют гвоздик, прижимают к нему линейку и поворачивают ее так, чтобы две отмеченные точки оказались одновременно на двух заданных кривых.

Для примера рассмотрим задачу о трисекции угла. Пусть имеется некоторый угол α. Построим такой угол β, чтобы α = 3β. Обозначим вершину угла α точкой O и проведем произвольную окружность с центром в этой точке. Лучи угла α пересекут окружность в точках M и P.

Обозначим длину отрезка OM за a. Продлим отрезок OM на некоторое расстояние. Теперь возьмём линейку и отметим на ней отрезок AB длинной a (то есть AB = OM). Далее прислоним линейку к точке P и будем поворачивать линейку так, чтобы точка A оказалась на прямой OM, а точка B на дуге окружности. В результате мы получим угол BAO, равный трети исходного угла α.

Доказать правильность такого решения несложно. Все построенные на чертеже треугольники являются равнобедренными, со сторонами равными радиусу окружности. Кроме того угол PBO = 2β, поскольку является внешним углом треугольника ABO. В треугольнике BPO угол γ = 180-2β-2β=180-4β. С другой стороны угол AOM развернутый, поэтому γ = 180-β-α. Отсюда следует, что α = 3β, а это и требовалось доказать.


Разумеется, мезолябия (как и другие механизмы) давала точные решения лишь в теории, поскольку на практике оказывалось очень трудно выставить пластинки в требуемое положение. Неудивительно поэтому, что греки не удовлетворились подобными техническими средствами и все-таки окончательно ввели в геометрию объемные геометрические места. Вместо пересечения прямых и окружностей теперь рассматривались линии пересечения цилиндров, конусов, шаров и плоскостей, в результате чего возникали кривые высших порядков. Отдельное, не дошедшее до нас сочинение Евклида было посвящено как раз коническим сечениям, которые хоть и не одобрялись Платоном, но имели тогда сугубо теоретическое значение, а потому все-таки считались приемлемыми.

Изначально греки действительно рассматривали пересечения реальных трехмерных фигур, но уже Менехм и Евдокс знали, что во всех рассматриваемых случаях получается несколько вполне определенных кривых, которые можно вычерчивать на плоскости по определенным правилам. По своей сути эти правила являлись аналогом наших современных уравнений. Сложность математических изысканий теперь существенно возросла, однако никто не предполагал, что эти вопросы могут принести когда-нибудь реальную практическую пользу. Лишь в XVII веке Кеплер открыл, что планеты движутся по эллипсам, а Галилей показал, что пушечные ядра летят по параболам. Греки изучали кривые высших порядков исключительно из любознательности или тщеславия, либо же из стремления постигнуть высшие философско-мистические истины. Образованные греки не видели (да и не могли увидеть) вокруг себя ничего, что требовало бы использования всей мощности доступного им математического аппарата. Но коль скоро подходящих для изучения объектов не удавалось отыскать на Земле, эллины обратили свои взоры на небо.

Математические интересы Архимеда


Особый интерес такого рода построения вызывали у Архимеда, который достиг удивительных высот в математических исследованиях. Он, в отличие от Евклида, являлся оригинальным мыслителем, направившим всю мощь своего гения на неустанный поиск новых истин и последующую пропаганду сделанных открытий. При этом Архимеда не волновало обобщение достижений прошлого, поэтому в своих работах он зачастую просто ссылался на уже известные в его время результаты, пропуская при этом часть доказательств.

Труды Архимеда известны нам в основном благодаря тому, что у эллинистических ученых существовала следующая занимательная традиция: математик, которому удавалось открыть новую интересную теорему, не спешил сразу же публиковать результаты, но сперва предлагал коллегам испытать свои силы в поиске доказательства (схожий обычай вновь возникнет у европейских ученых в XVII-XVIII веках). Так, вернувшись из Александрии в родные Сиракузы, Архимед вёл оживленную переписку со своими друзьями из Музея – главой библиотеки Эратосфеном и придворным астрономом Кононом, а позже – с его любимым учеником Досифеем. Последнему, впрочем, ввиду его молодости Архимед уже не предлагал найти доказательства новых теорем самостоятельно, а сразу же сообщал их в полном объеме.

Любимыми разделами геометрии оказались у Архимеда те, которые требовали применения интегрирования, поскольку лишь этот метод еще позволял получать действительно новые знания. Остальное, сколь это позволяли старые средства, было открыто еще до Евклида. Тем не менее, сама процедура интегрирования, как мы помним, была запрещена идеалистической философией, а потому Архимед оказался вынужден перенести в математику некоторые приемы из разработанной им же механики: учение о центре тяжести и закон рычага, которые мы подробно рассмотрим в одной из следующих глав. Подразумевалось, что условное тело как бы нарезается на тонкие пластинки, которые затем каким-нибудь хитроумным способом уравновешиваются на воображаемом рычаге с помощью известного груза. Фактически это было не чем иным, как замаскированным методом атомистов, да еще и многократно усложненным за счет механических построений. Сам Архимед, однако, обладал техническим складом ума, и потому достиг невероятной виртуозности именно в «механическом интегрировании».

 

В любом случае даже закон рычага не мог скрыть того факта, что в решениях Архимеда тела делились на тончайшие элементы, поэтому механический метод мог тогда считаться пригодным лишь для нахождения новых предварительных результатов, которые затем требовалось строго доказывать. Не вполне ясно, считал ли сам Архимед свои рассуждения логически безупречными, но он точно сомневался, что механические нововведения убедят его коллег.

Хоть и известно, что Архимед многие свои решения находил именно с помощью интегрирования, однако в поздних работах предпочитал вовсе не упоминать о нем, используя классический общепризнанный тогда метод исчерпания с последующим сведением к абсурду. Важным новшеством тут оказалось использование сразу двух достраиваемых фигур – вписанной и описанной. Имея нестрогое атомистическое решение, Архимед показывал, что площадь вписанной фигуры всегда меньше этого решения, а площадь описанной – всегда больше, но при этом разницу между этими площадями можно сделать сколь угодно малой, меньше любой заданной величины. Таким образом, оказывалось, что площадь искомой кривой не может быть ни больше, ни меньше имеющегося решения, поскольку заключена между сближающимися между собой верхней и нижней границами. Некоторым образом такой подход, хоть и неявно, мог подвести читателей к современному нам понятию предела. С другой стороны, Архимед не выделил приведенные рассуждения в отдельную теорему и подробно повторял их для каждого рассматриваемого случая.

Площадь параболы. Геометрическое доказательство Архимеда


Общий математический подход Архимеда легко понять на примере решения задачи об определении площади параболы, которое было в свое время отправлено Досифею. После пожелания здоровья адресату и слов сожаления о кончине Конона следует краткое введение, где сообщается о том, что геометры прошлого (очевидно, имеются в виду атомисты и их последователи) часто пользовались вряд ли убедительными предпосылками, а потому большинство ученых не приняли предлагаемых этими геометрами решений для площадей различных фигур. Далее Архимед приводит другую посылку «излишек, на который одна площадь превосходит другую, будучи прибавляем к самому себе, может в итоге стать больше любой данной площади» и перечисляет полученные с ее помощью решения, чья истинность общепризнана. Этой посылки, утверждает Архимед, оказалось достаточно, чтобы установить следующий новый факт: сегмент, ограниченный прямой линией и сечением прямоугольного конуса (термина «парабола» еще не существовало), равновелик четырем третям треугольника, имеющего такие же основание и высоту. К письму было приложено обстоятельное доказательство, осуществленное двумя способами: геометрическим и механическим.

Вероятнее всего, первоначально Архимед использовал те самые «неубедительные» предпосылки атомистов, чтобы представить параболический сегмент и построенный на нем треугольник в виде множества плотно прилегающих друг к другу линий. Такой подход позволил ему получить искомое решение, но в отправленном Досифею доказательстве об этой части своей работы Архимед умалчивает.

Приведем сперва геометрический способ доказательства, как наиболее наглядный, хотя в самом тексте Архимеда этот вариант дается после механического. Пусть имеется парабола AOB и прямая AB, отделяет от нее сегмент. Ниже будет рассмотрен простейший вариант симметричного сегмента параболы, но в целом неважно, как именно проходит прямая AB, поскольку суть доказательства всегда останется одной и той же.

Для начала обратимся к левой части чертежа. Проведем через точки A и B касательные к параболе. Они пересекутся в точке Q. Нетрудно показать (и это было уже известно Архимеду), что если точки N и M являются серединами отрезков AQ и BQ, то NM касается параболы в точке O. Из условий подобия заключаем, что площадь треугольника NMQ (заштрихован крупными клеточками) равна SNMQ = 1/4·SAQB. Также заметим, что треугольники ANM и NMQ имеют равные площади, поскольку у них одно и то же основание NM и равные высоты (ведь N является серединой AQ). Теперь отметим точки K и L на серединах отрезков AN и NO. Аналогично предыдущему построению получим, что KL касается параболы в точке P, причем площадь треугольника KNL (заштрихован мелкими клеточками) равна SKNL = 1/8·SANM, поскольку его основание вчетверо меньше, а высота вдвое меньше, чем у треугольника ANM. Таким образом, площадь двух заштрихованных мелкими клеточками треугольников составит 1/16 от SAQB. Достроив по такому же принципу треугольники в оставшихся незаштрихованных четырех областях под параболой мы получим, что площадь новых треугольников составит 1/64 от SAQB. Далее дополнительные треугольники можно описывать вокруг параболы сколь угодно долго, получая на каждом этапе вчетверо меньшую площадь, чем до этого. Иными словами, чтобы понять, какую часть от треугольника AQB занимает площадь под параболой, нам нужно найти сумму следующего ряда

Из вспомогательного чертежа видно, что сумма этого ряда равна 1/3, поскольку каждый заштрихованный квадратик занимает треть от своего L-образного участка (площадь всего большого квадрата принимается за 1). Но если заштрихованная площадь равна трети от треугольника AQB, то незаштрихованная, соответственно – двум третям.

В результате мы получили, что площадь сегмента параболы равна 2/3 от SAQB, либо же 4/3 от SAOB, поскольку площадь треугольника AOB вдвое меньше площади треугольника AQB (у них одинаковое основание AB, но высоты относятся как 1 к 2). Поскольку Архимед не осуществлял предельного перехода, то на самом деле он лишь показывал, что, достраивая внешние треугольники много-много раз, мы добьемся того, что разница между площадью незаштрихованной части чертежа и 4/3 от SAOB станет меньше любой наперед заданной малой величины.

Получив верхнюю оценку площади параболического сегмента, Архимед приступал к определению оценки снизу. Для этого он вписывал в параболу треугольник AOB (правая часть чертежа), а затем достраивал на сторонах этого треугольника дополнительные треугольники APO, предполагая дальнейшее построение новых треугольников на сторонах получившейся фигуры. Несложно показать, что SAPO = 1/8·SAOB, а, значит, за первый этап достраивания (с обеих сторон) мы прибавили 1/4 от SAOB. Аналогично можно показать, что много раз достраивая новые треугольники внутри незаштрихованных областей параболы, мы на каждом этапе получим вчетверо меньшую площадь, чем до этого. Иными словами, чтобы понять, какую часть от треугольника AOB занимает сегмент параболы, нам нужно найти сумму следующего ряда

Очевидно, что сумма этого ряда равна 1+1/3 = 4/3. В результате Архимед вновь получил, что разницу между незаштрихованной частью чертежа и 4/3 от SAOB можно сделать меньше любой наперед заданной малой величины.

Итак, площадь описанного вокруг параболы многоугольника всегда больше 4/3 от SAOB, а площадь вписанного – всегда меньше 4/3 от SAOB. Более того, при достаточном числе достраиваний разность между площадями этих многоугольников может быть сделана сколь угодно малой. Отсюда необходимо заключить, что площадь параболического сегмента не может быть ни больше, ни меньше 4/3 от SAOB. В самом деле, если площадь параболического сегмента больше либо меньше 4/3·SAOB на величину Δ, то это означает, что разница между площадями указанных многоугольников больше Δ, что абсурдно, поскольку противоречит уже доказанной возможности сделать эту разницу меньше любой величины, включая, разумеется, и Δ.

С современной точки зрения приведенное доказательство выглядит чересчур переусложненным: дважды получается один и тот же результат, после чего добавляется казуистический логический ход сведения к абсурду. Но таковы были математические правила эпохи. Никакой иной способ рассуждений не считался достаточно убедительным.

Архимед суммирует ряды


Если теперь ненадолго вернуться к суммированию ряда, то нужно пояснить, что простая ссылка на чертеж, разумеется, никак не могла считаться достаточно убедительной. В самом деле, не имея еще представлений о теории предела, нельзя было утверждать, что бесконечный ряд имеет какую-то конкретную сумму. Архимед доказывал лишь то, что сумма любого конечного числа членов этого ряда отличается от 4/3 не больше чем на треть последнего члена. Делалось это (в наших обозначениях) следующим образом. Пусть мы имеем ряд членов А, В, С, D, … Y, Z где каждый последующий член равен четверти предыдущего. Тогда запишем следующую (придуманную нами) последовательность

причем


, … ,

поэтому

Сократив все одинаковые члены слева и справа, получим

либо же, прибавив A слева и справа, имеемЕсли А = 1, то сумма всех членов ряда и трети последнего члена равна 4/3. С современной точки зрения правомерно заключить, что при достаточно большом числе членов ряда треть последнего может быть сделана меньше любой заданной величины, поэтому сумма просто равна 4/3. Однако Архимед использует уже известный нам шаблон: предполагает, что эта сумма отличается от 4/3 на какую-либо заданную величину, а затем приходит к абсурду.


На способе Архимеда суммировать ряды имеет смысл остановиться подробнее. Это позволит читателю еще лучше уяснить себе, что на самом деле представляла собой математика того времени. Ранее мы уже рассматривали последовательность 1 + 2 + 3…+ n, сумма которой определялась с помощью соединения двух состоящих из клеточек ступенчатых треугольников. Получалось, что сумма такого ряда равна (n+1)/2 = (n2+ n)/2. При очень большом числе членов ряда можно пренебречь величиной n по сравнению с n2, и получить формулу n2/2.

Такой подход применялся издревле, но получил особенно богатое развитие у атомистов. Однако в геометрической алгебре Евдокса и Евклида современным числам соответствовали только и исключительно отрезки прямых. Мыслить единицу как квадратик единичной площади считалось невозможным. Поэтому Архимед, вынужденный придерживаться данного принципа, суммирует указанный ряд следующим образом. Отрезки располагаются в порядке возрастания (толстые линии на чертеже). Затем каждый отрезок достраивается до самого длинного (до длины n), а в самом начале добавляется еще один отрезок длиной n (тонкие линии на чертеже).

Очевидно, что общее число отрезков теперь равно n+1, а их суммарная длина равна (n+1). Также несложно увидеть, что достроенные отрезки в точности повторяют исходные, поэтому их суммарная длина составляет как раз S = (n+1)/2 = (n2+n)/2. Ясно, что S > n2/2, так что это значение можно принять за нижний предел.

 

Теперь введем обозначение m = n+1 и запишем S = (m-1)·m/2 = (m2-m)/2, откуда ясно, что рассматриваемая сумма S < m2/2 = (n+1)2/2, и это значение можно принять за верхний предел. Таким образом, мы имеем n2/2 < S < (n+1)2/2, и методом сведения к абсурду можно доказать, что при достаточно большом значении n можно сделать разницу между S и n2/2 меньше любой, заранее заданной величины.


Особый интерес представляет случай, когда отрезок единичной длинный принимается короче любого наперед заданного (фактически является минимальным неделимым, или же бесконечно малым). Тогда в современных обозначениях мы можем записать формулу для суммы рассматриваемого ряда как

Даже на рассмотренном примере видно, что метод Евдокса чересчур усложнен и совсем не так нагляден, как атомистический, но для такой простой задачи он, в принципе, кажется вполне применимым. Однако же с рядом 12 + 22 + 32…+ n2 Архимед уже сам не знал, как поступить (ведь квадраты величин все еще требовалось представлять в виде отрезков, а не площадей), поэтому он честно признал, что просто подгоняет решение под заранее известный ответ S = (2n3+3n2+n)/6. При бесконечно большом n решение принимает вид S = n3/3, что в современных обозначениях (при бесконечно малой единичной длине), можно записать как

Разумеется, Архимед не использовал обозначение для интеграла, да и вообще всякую алгебраическую символику. Все приведенные формулы принимали у него вид теорем, в которых к ряду линий определенным образом прикладывались площади, имеющие избытком квадрат (аналог левой части формулы), а затем показывалось, что сумма полученных площадей составляет конкретную часть от какой-либо заранее заданной площади (аналог правой части формулы). В данном случае n3 нужно понимать не как объем, а как площадь прямоугольника со сторонами равными n и n2. Требовались недюжинные интеллектуальные способности просто для того, чтобы понять, о чем вообще идет речь, это не говоря уже об уяснении самой сути длинного доказательства.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58 
Рейтинг@Mail.ru