bannerbannerbanner
полная версияStudies in the Theory of Descent, Volume I

Weismann August
Studies in the Theory of Descent, Volume I

II. ON PHYLETIC PARALLELISM IN METAMORPHIC SPECIES

INTRODUCTION

In the previous essay I attempted to trace a whole group of apparently “purely morphological” characters to the action of known factors of transformation, to explain them completely by these factors, and in this manner I endeavoured to exclude the operation of an internal power inciting change (phyletic vital force).

In this second study I have attempted to solve the problem as to whether such an innate inciting power can be shown to exist by comparing the forms of the two chief stages of metamorphic species, or whether such a force can be dispensed with.

Nobody has as yet apparently entertained the idea of testing this question by those species which appear in the two forms of larva and imago (insects), or, expressed in more general terms, by those species the individuals of which successively possess quite different forms (metamorphosis), or in which the different forms that occur are distributed among different individuals alternating with and proceeding from one another (alternation of generation). Nevertheless, it is precisely here that quite distinct form-relationships would be expected according as the development of the organic world depended on a phyletic vital force, or was simply the response of the specific organism to the action of the environment.

Assuming the first to be the case, there must have occurred, and must still occur, what I designate “phyletic parallelism,” i. e. the two stages of metamorphic species must have undergone a precisely parallel development – every change in the butterfly must have been accompanied or followed by a change in the caterpillar, and the systematic groups of the butterflies must be also found in a precisely corresponding manner in a systematic grouping of the caterpillars. If species are able to fashion themselves into new forms by an innate power causing periodic change, this re-moulding cannot possibly affect only one single stage of development – such as the larva only – but would rather extend, either contemporaneously or successively, to all stages – larva, pupa, and imago: each stage would acquire a new form, and it might even be expected that each would change to the same extent. At least, it cannot be perceived why a purely internal force should influence the development of one stage more than that of another. The larvæ and imagines of two species must differ from one another to the same extent, and the same must hold good for the larvæ and imagines of two genera, families, and so forth. In brief, a larval system must completely coincide with the system based entirely on imaginal characters, or, what amounts to the same thing, the form-relationships of the larvæ must correspond exactly with the form-relationships of the imagines.

On the other hand, the condition of affairs must be quite different if an internal power causing phyletic remodelling does not exist, the transformation of species depending entirely on the action of the environment. In this case dissimilarities in the phyletic development of the different stages of life must be expected, since the temporary, and often widely deviating, conditions of life in the two stages can and must frequently influence the one stage whilst leaving the other unacted upon – the former can therefore undergo remodelling while the latter remains unchanged.169

By this means there would arise an unequal difference between the two stages of two species. Thus, the butterflies, supposing these to have become changed, would bear a more remote form-relationship to each other than the caterpillars, and the differences between the former (imagines) would always be greater than that between the larvæ if the butterflies were, at several successive periods, affected by changing influences whilst the larvæ continued under the same conditions and accordingly remained unaltered. The two stages would not coincide in their phyletic development – the latter could not be expressed by parallel lines, and we should accordingly expect to find that there was by no means a complete congruity between the systems founded on the larval and imaginal characters respectively, but rather that the caterpillars frequently formed different systematic groups to the butterflies.170

Accordingly, the problem to be investigated was whether in those species which develope by means of metamorphosis, and of which the individual stages exist under very different conditions of life, a complete phyletic parallelism was to be found or not. This cannot be decided directly since we cannot see the phyletic development unfolded under our observation, but it can be established indirectly by examining and comparing with each other the form-relationships of the two separate stages – by confronting the larval and imaginal systematic groups. If the phyletic development has been parallel and perfectly equal, so also must its end-results – the forms at present existing – stand at equal distances from one another; larval and imaginal systems must coincide and be congruent. If the course of the phyletic development has not been parallel, there must appear inequalities – incongruences between the two systems.

I am certain that systematists of the old school will read these lines with dismay. Do we not regard it as a considerable advance in taxonomy that we have generally ceased to classify species simply according to one or to some few characters, and that we now take into consideration not merely the last stage of the development (the imago), but likewise the widely divergent young stages (larva and pupa)? And now shall it not be investigated whether caterpillars and butterflies do not form quite distinct systems? In the case of new species of butterflies of doubtful systematic position was not always the first question: – what is the nature of the caterpillars? and did not this frequently throw light upon the relationships of the imago? Assuredly; and without any doubt we have been quite correct in taking the larval structure into consideration. But in so doing we should always keep in mind that there are two kinds of relationship – form- and blood-relationship – which might possibly not always coincide.

It has hitherto been tacitly assumed that the degree of relationship between the imagines is always the same as that between the larvæ, and if blood-relationship is spoken of this must naturally be the case, since the larva and the imago are the same individual. In all groups of animals we have not always the means of deciding strictly between form- and blood-relationship, and must accordingly frequently content ourselves by taking simply the form-relationship as the basis of our systems, although the latter may not always express the blood-relationship. But it is exactly in the case of metamorphic species that there is no necessity for, nor ought we to remain satisfied with, this mode of procedure, since we have here two kinds of form-relationship, that of the larvæ and that of the imagines, and, as I have just attempted to show, it is by no means self-evident that these always agree; there are indeed already a sufficient number of instances to show that such agreement does not generally exist.

This want of coincidence is strikingly shown in a group of animals widely remote from the Insecta, viz. the Hydromedusæ, the systematic arrangement of which is quite different according as this is based on the polypoid or on the medusoid generation. Thus, the medusoid family of the oceanic Hydrozoa springs from polypites belonging to quite different families, and in each of these polypoid families there are species which produce Medusæ of another family.

Similarly, the larvæ of the Ophiuroidea (Pluteus-form) among the Echinodermata are not the most closely related in form to those of the ordinary star-fishes, but rather to the larvæ of quite a distinct order, the sea-urchins.

I will not assert that in these two cases the dissimilarity in the form-relationship, or, as I may designate it, the incongruence of the morphological systems, must depend on an unequal rate of phyletic development in the two stages or generations, or that this incongruence can be completely explained by the admission of such an unequal rate of development: indeed it appears to me probable that, at least in the Ophiureæ, quite another factor is concerned – that the form-relationship to the larvæ of the sea-urchins does not depend upon blood-relationship, but on convergence (Oscar Schmidt), i. e. on adaptation to similar conditions of life. These two cases, however, show that unequal form-relationship of two stages may occur.

 

From such instances we certainly cannot infer off-hand that a phyletic force does not exist; it must first be investigated whether and to what extent such dissimilarities can be referred to unequal phyletic development and, should this be the case, whether deviations from a strict congruence of the morphological systems are not compatible with the admission of an internal transforming power. That a certain amount of influence is exerted by the environment on the course of the processes of development of the organic world, will however be acceded to by the defenders of the phyletic vital force. It must therefore be demonstrated that deviations from complete congruence occur, which, from their nature or magnitude, are incompatible with the admission of innate powers, and, on the other hand, it must likewise be attempted to show that the departures from this congruence as well as the congruence itself can be explained without admitting a phyletic vital force.

In the following pages I shall attempt to solve this question for the order Lepidoptera, with the occasional assistance of two other orders of insects. Neither the Echinodermata nor the Hydromedusæ are at present adapted to such a critical examination; the number of species in these groups of which the development has been established with certainty is still too small, and their biological conditions are still to a great extent unknown. In both these respects they are far surpassed by the Lepidoptera. In this group we know a large number of species in the two chief stages of their development and likewise more or less exactly the conditions under which they exist during each of these phases. We are thus able to judge, at least to a certain extent, what changes in the conditions of life produce changes of structure. Neither in the number of known species of larvæ, nor in the intimate knowledge of their mode of life, can any of the remaining orders of insects compete with the Lepidoptera. There is no Dipterous or Hymenopterous genus in which ten or more species are so intimately known in the larval stage that they can be employed for the purposes of morphological comparison. Who is able to define the distinctions between the life-conditions of the larvæ of twenty different species of Culex or of Tipula? The caterpillars of closely allied species of Lepidoptera, on the other hand, frequently live on different plants, from which circumstance alone a certain difference in the life-conditions is brought about.

The chief question which the research had to reply to was the following: – Does there exist a complete phyletic parallelism among Lepidoptera or not? or, more precisely speaking: – Can we infer, from the form-relationships which at present exist between larvæ on the one hand and imagines on the other, an exactly parallel course of phyletic development in both stages; or do incongruences of form-relationship exist which point to unequal development?

Before I proceed to the solution of this question it is indispensable that one point should be cleared up which has not been hitherto touched upon, but which must be settled before the problem can be formally stated in general terms. Before it can be asked whether larvæ and imagines have undergone a precisely parallel development, we must know whether unequal development is possible – whether there does not exist such an intimate structural relationship between the two stages that every change in one of these must bring about a change in the other. Were this the case, every change in the butterfly would cause a correlative change in the caterpillar, and vice versâ, so that an inequality of form-relationship between the larvæ on one hand and the imagines on the other would be inconceivable – systems based on the characters of the caterpillars would completely coincide with those based on the characters of the butterflies and we should arrive at a false conclusion if we attributed the phyletically parallel development of the two stages to the existence of an internal phyletic force, whilst it was only the known factor, correlation, which caused the equality of the course of development.

For these reasons it must first be established that the larva and imago are not respectively fixed in form, and the whole of the first section will therefore be devoted to proving that the two stages change independently of one another. Conclusions as to the causes of change will then be drawn, and these will corroborate from another side a subsequent inquiry as to the presence or absence of complete congruence in the two morphological systems. The two questions the answers to which will be successively attempted are by no means identical, although closely related, since it is quite conceivable that the first may be answered by there being no precise correlation of form, or only an extremely small correlation, between the caterpillar and the imago, whilst, at the same time, it would not be thereby decided whether the phyletic development of the two stages had kept pace uniformly or not. A perfect congruence of morphological relationships could only take place if transformations resulted from an internal power instead of external influences. The question: – Does there exist a fixed correlation of form between the two stages? must therefore be followed by another: – Do the form-relationships of the two stages coincide or not – has their phyletic development been uniform or not?

169[Compare this with Darwin’s “Origin of Species” (1st. ed. p. 440), where it is stated that when an animal, during any part of its embryonic career, is active, and has to provide for itself, “the period of activity may come on earlier or later in life; but whenever it comes on, the adaptation of the larva to its conditions of life is just as perfect and beautiful as in the adult animal. From such special adaptations the similarity of the larvæ or active embryos of allied animals is sometimes much obscured.” R.M.]
170[For Fritz Müller’s application of this principle to the case of certain groups of Brazilian butterflies see . to this Part. R.M.]
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20 
Рейтинг@Mail.ru