Руководитель проекта A. Рысляева
Арт-директор Л. Беншуша
Дизайнер М. Грошева
Корректор И. Астапкина
Компьютерная верстка Б. Руссо
© Сергей Израйлевич, Вадим Цудикман, 2017
© Оформление. ООО «Интеллектуальная Литература», 2017
Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).
Выражаем искреннюю признательность сотрудникам НОУ СОШ «Академическая Гимназия», оказавшим неоценимую помощь при подготовке этой книги. Мы также благодарны нашим дочерям Израйлевич Ирис, Израйлевич Виктории, Цудикман Элизабет за помощь в подборе фактического материала, его обработке и графической визуализации.
Эта книга посвящена построению автоматизированной системы для торговли опционами. Мы ориентировались на подготовленного читателя (трейдеров, инвесторов, портфельных менеджеров, исследователей), знакомого с основами статистики, теории вероятностей и базовыми понятиями в области финансового анализа. Читателям, впервые сталкивающимся с опционами, мы рекомендуем начать с Приложения, где приводятся основные определения, разъясняются понятия и термины, достаточные для понимания излагаемого в книге материала.
Природа опционов позволяет построить большое количество спекулятивных торговых стратегий, основанных на различных принципах.
Во многих стратегиях опционы используются в качестве вспомогательных инструментов, обеспечивающих хеджирование основных позиций. В этой книге мы не будем касаться данной области применения опционов, поскольку хеджирование является лишь одним из составных элементов таких торговых стратегий, но никогда не является их основой.
Опционы могут также использоваться для создания синтетических позиций по базовому активу. В этом случае инвестор стремится к тому, чтобы профили платежных функций опционной комбинации и базового актива совпадали. Это позволяет существенно увеличить торговый левередж. Однако, помимо левереджа, автоматизированная торговля синтетическими активами ничем не отличается от торговли самими базовыми активами. (За исключением некоторых особенностей исполнения торговых заявок, необходимости роллирования позиций и более высоких брокерских комиссий.) Поэтому мы не будем в дальнейшем останавливаться на стратегиях такого рода.
Большинство стратегий, ориентированных на торговлю обычными активами (не опционами), основываются на прогнозе направления движения цены актива (мы будем называть такие стратегии «направленными»). Опционы также могут использоваться в подобных стратегиях. Например, разного рода спреды позволяют извлекать прибыль при росте цены базового актива (бычий спред), либо при ее падении (медвежий спред). Несмотря на то что торговые стратегии на основе направленных спредов обладают многими особенностями, отличающими их от стратегий, использующих обычные активы, главным детерминантом успешности стратегии остается точность прогноза ценовых движений. Это свойство делает такие стратегии весьма сходными с обычными торговыми стратегиями, и поэтому мы не будем рассматривать их в этой книге.
Основной акцент в этой книге будет сделан на такие классы стратегий, которые позволяют использовать специфические особенности опционов, свойственные только этим финансовым инструментам. Одним из ключевых отличий опционов от других инвестиционных активов является нелинейность их платежной функции. При торговле акциями, фьючерсами, валютой и другими линейными активами прибыль или убыток трейдера прямо пропорциональны росту или снижению цены актива. В случае опционов прибыльность позиции зависит не только от направления движения цены, но и от многих других факторов. Более того, комбинируя разные опционы на один и тот же базовый актив, можно получить практически любую форму платежной функции для итоговой комбинации.
Эти свойства опционов позволяют создавать позиции, зависящие не только от направления и амплитуды ценовых флуктуаций, но и от других параметров, среди которых основными являются подразумеваемая и историческая волатильность, а также время, остающееся до экспирации опционов. Основным предметом нашего рассмотрения будет целый класс стратегий, характеризующийся общим свойством, называемым «маркет-нейтральность». Применительно к опционам маркет-нейтральность означает, что: (1) небольшие изменения цены базового актива не приведут к существенным колебаниям в стоимости позиции, (2) при больших ценовых движениях стоимость позиции изменится на приблизительно одинаковую величину независимо от того, выросла ли стоимость базового актива или снизилась. В реальности эти условия выполняются не всегда, а являются лишь общим ориентиром для трейдера, стремящегося к соблюдению принципа маркет-нейтральности.
Основным аналитическим инструментом, применяемым для создания маркет-нейтральных позиций, служит дельта. Позиция считается маркет-нейтральной, если сумма дельт всех входящих в ее состав опционов и базовых активов равна или близка к нулю.
Другой класс стратегий, рассматриваемых в этой книге, представляет собой совокупность маркет-нейтральных стратегий с элементами направленности. В рамках этих стратегий опционные позиции формируются с учетом дельты (хотя приведение ее к нулю не является обязательным условием), но при этом также учитываются прогнозы направления будущих ценовых движений. Эти прогнозы могут встраиваться в структуру стратегий в форме смещенных распределений вероятности либо в виде индикаторов технического и фундаментального анализа. Мы будем называть такие стратегии «частично-направленными».
Многие торговые стратегии ориентируются на торговлю одним или несколькими финансовыми инструментами (преимущественно фьючерсами на определенный базовый актив). Даже если одновременно торгуются несколько инструментов, в большинстве случаев позиции по ним открываются, закрываются и анализируются независимо друг от друга. Не составляют исключения и опционы. Многие трейдеры разрабатывают системы, ориентированные исключительно на торговлю OEX (опционы на фьючерс на S&P 100) или опционами на нефтяные фьючерсы. В этой книге мы будем рассматривать стратегии, ориентированные на одновременную торговлю опционами на потенциально неограниченное количество базовых активов. При этом все позиции, открываемые в рамках одной торговой стратегии, будут оцениваться и анализироваться во всей своей совокупности, как единый портфель.
Существуют два основных подхода к разработке автоматизированных торговых стратегий. Первый подход базируется на априорных принципах и концепциях, определяемых разработчиком стратегии. Каждый элемент стратегии такого рода создается на основе предположений, вытекающих из экономических знаний, фундаментальных оценок инвестиционных активов, экспертных оценок, предположений о динамике рынка, закономерностей технического анализа и многих других факторов. Результатом формализации этих знаний, оценок и предположений является разработка комплекса торговых правил, составляющих основу торговой стратегии. Используя терминологию, предложенную Робертом Пардо, мы будем называть такой подход научным.
В предельном случае научный подход предполагает полный отказ от использования процедуры оптимизации. Все торговые правила и параметры торговой системы определяются исключительно исходя из знаний, предположений и прогнозов разработчика. Очевидно, вероятность создания прибыльной стратегии в условиях полного отказа от оптимизационной настройки системы на исторических данных крайне низка. Насколько нам известно, научный подход в чистом виде практически не используется в реальной торговле.
Альтернативный подход основывается на полном отказе от использования осмысленных априорных закономерностей и знаний в процессе разработки автоматизированных торговых стратегий. Этот подход предполагает массированное использование компьютерных технологий. В упрощенном виде его можно охарактеризовать, как поиск таких алгоритмов покупки и продажи активов, которые позволяют максимизировать задаваемые разработчиком функции полезности. Алгоритмы выбираются из большого числа готовых библиотек либо создаются самим разработчиком. При этом механизм построения алгоритмов не задается каким-либо разумным образом, основанным на предварительных предположениях, и не ограничивается никакими внесистемными соображениями. Выбор торговых алгоритмов осуществляется исключительно на основе их тестирования на исторических временных рядах. Получаемая в результате торговая стратегия представляет собой набор правил, лишенный определенной экономической и поведенческой логики. Следуя терминологии Роберта Пардо, мы будем называть такой подход эмпирическим.
В предельном случае эмпирический подход основывается исключительно на оптимизации и целенаправленном поиске таких комбинаций алгоритмов и параметров, которые принесли бы максимальную прибыль (минимальный убыток либо удовлетворяли требованиям любой другой функции полезности) в прошлом. На сегодняшний день существует множество высокотехнологичных разработок, позволяющих осуществлять эффективный и достаточно быстрый поиск оптимальных алгоритмов и параметров, удовлетворяющих требованиям эмпирического подхода. В качестве примера можно привести нейронные сети и генетические методы, позволяющие находить оптимальные решения за счет построения самообучающихся систем.
Как правило, торговые стратегии, созданные на основе эмпирического подхода, показывают превосходные результаты в ходе тестирования на исторических временных рядах, однако приводят к провальным результатам в реальной торговле. Причиной этого является чрезмерная заоптимизированность (overfitting). Не спасает даже применение анализа на условно-будущем периоде (walk-forward), поскольку наличие большого числа степеней свободы при построении стратегии позволяет выбрать такой набор правил, который позволит получить приемлемые результаты не только на оптимизационном периоде, но и на условно-будущем периоде, не задействованном в ходе оптимизации (подробнее об этом будет рассказано в главе, посвященной бэктестингу). Поэтому практическое использование эмпирического подхода в его чистом виде весьма рискованно и малоприменимо в реальной торговле.
Большинство трейдеров сочетают при разработке торговых стратегий элементы как научного, так и эмпирического подходов. Такой комбинированный подход мы будем называть рациональным.
На начальном этапе реализации рационального подхода, формируется набор правил, определяющих общую структуру будущей стратегии. Эти правила основываются на предварительных знаниях и предположениях о поведении рынка. На этом этапе часто используются результаты статистических исследований, проведенных самим разработчиком, либо полученных из средств массовой информации, научных публикаций, частных источников. Закономерности, установленные в ходе подобных исследований, позволяют заложить в разрабатываемую стратегию определенную логику и экономический смысл. В то же время такие исследования могут выявлять зависимости, лишенные какой-либо логики и не поддающиеся объяснению с точки зрения экономических законов или известных особенностей биржевой динамики. К таким зависимостям следует относиться с большой осторожностью, поскольку они могут носить случайный характер или возникать в результате искусственной настройки на данные (data mining).
Начальный этап построения стратегии основывается по большей части на элементах научного подхода. На этом этапе необходимо определить следующее:
• принципы генерирования сигналов на открытие и закрытие торговых позиций;
• индикаторы, используемые для генерирования сигналов на открытие и закрытие торговых позиций;
• набор инвестиционных активов потенциально доступных для торговли;
• требования, предъявляемые к портфелю, и накладываемые на него ограничения;
• принципы управления капиталом (доля капитала инвестируемого в портфель);
• принципы распределения капитала между элементами портфеля;
• методы и инструменты управления рисками.
На следующем этапе построения торговой стратегии правила, отобранные на основе научных принципов, описываются в виде строго формализованных процедур. Данный этап характеризуется преимущественным использованием элементов эмпирического подхода. Для этого необходимо:
• ввести в систему определенное количество параметров;
• задать алгоритмы расчета параметров;
• установить порядок выбора числовых значений параметров.
Практически каждое правило, сформулированное на научной основе, может быть формализовано с использованием разного количества параметров. Алгоритмы расчета параметров могут быть самыми разными. И, наконец, порядок выбора числовых значений параметров означает выбор определенной схемы оптимизации.
Принятие решений о количестве параметров, методах их расчета и оптимизации, как правило, не зависит от экономических оценок разработчика, а определяется исходя из технических ограничений и требований, предъявляемых к общей структуре стратегии. В свою очередь, ограничения и требования задаются исходя из соображений надежности, устойчивости и прочих показателей создаваемой стратегии, среди которых не последнее место занимает решение проблемы возможной чрезмерной оптимизации.
В результате рационального сочетания научного и эмпирического подходов получаются стратегии, основанные, с одной стороны, на осмысленных экономических принципах и закономерностях, а с другой стороны, использующие преимущества оптимизации и современных достижений в области IT-технологий.
В этой книге мы будем придерживаться принципов рационального подхода к разработке торговых стратегий. При этом следует помнить, что основной задачей разработчика является разумное сочетание методов научного и эмпирического подходов. Для этого требуется взвешенное распределение базовых компонентов торговой стратегии между двумя основными категориями: (1) категорией компонентов, задаваемых исходя из смысловых соображений и (2) категорией компонентов, формируемых методами подбора и оптимизации.
Как уже упоминалось выше, опционы, в отличие от многих других объектов инвестирования, обладают нелинейной платежной функцией. Поэтому оценка инвестиционной привлекательности опционов и получение торговых сигналов должны основываться на других принципах.
В основе большинства стратегий, ориентированных на торговлю линейными активами, лежит использование определенных индикаторов, предназначенных для генерирования сигналов на открытие и закрытие позиций. В качестве индикаторов используются инструменты технического анализа, оценивающие ценовые тренды, динамику объема торговли, перекупленность/перепроданность рынка и многие другие параметры. Кроме того, автоматизированная торговля линейными активами может базироваться на их фундаментальных показателях. Функция индикаторов состоит в прогнозировании направления будущих ценовых движений.
Рассматриваемые нами опционные стратегии не требуют предсказаний направления движения цены (хотя они и могут использоваться в качестве вспомогательных показателей). Поэтому для опционов в качестве индикаторов используются специальные критерии, призванные оценивать потенциальную прибыльность и риск позиций на основе других принципов. Как и в случае с линейными активами, основную задачу критериев можно сформулировать в общем виде как выявление недооцененных и переоцененных объектов инвестирования.
Справедливая стоимость опциона определяется мерой неопределенности относительно будущих колебаний цены его базового актива. Чем больше неопределенность, тем выше стоимость опциона. Строго говоря, стоимость опциона зависит от распределения вероятностей, приписываемых всем возможным реализациям цены базового актива.
Рынок некоторым образом оценивает меру неопределенности, что отражается в ценах опционов. Инвестор также может оценить величину неопределенности, исходя из своих собственных соображений, основанных на применении аппарата теории вероятности и других математических и статистических методов. Если оценка неопределенности, полученная инвестором, расходится с оценкой рынка, то инвестор вправе предположить, что рассматриваемый опцион переоценен или недооценен. Соотношение этих двух неопределенностей является основным философским принципом, на котором основывается построение критериев. Соотношение неопределенностей может выражаться прямо или косвенно, но всегда в той или иной форме присутствует в алгоритме, вычисляющем значения критериев.
Критерии, построенные на соотношении двух неопределенностей, оценивают справедливость рыночной цены опционов. Расчетный алгоритм критерия должен выражать величины обеих неопределенностей в числовой форме, приводить их к единой размерности и сопоставлять между собой. Если их значения совпадают или близки, значит опционы оцениваются рынком справедливо. Если же неопределенность, оцененная разработчиком, существенно больше (меньше) рыночной, то опционы недооценены (переоценены). Эффективность критерия во многом зависит от его способности выражать зависимость между степенью расхождения двух неопределенностей и мерой пере- и недооцененности опционов.
В своей предыдущей книге «Опционы: системный подход к инвестициям» мы описали алгоритмы расчета многих критериев, предназначенных для оценки опционов и их комбинаций. Мы также осветили основные этапы построения критериев, методы оптимизации их параметров и оценки эффективности.
Еще одной особенностью опционов является то, что, в отличие от прочих финансовых инструментов, деривативы имеют ограниченный срок жизни. Это накладывает определенные ограничения на продолжительность удержания позиции и требует в некоторых случаях осуществления процедур роллирования (что ведет к финансовым издержкам по причинам проскальзывания и дополнительных комиссий).
При торговле обычными активами любому сигналу на открытие позиции соответствует в будущем сигнал на закрытие этой позиции. В случае же с опционами закрывающих сигналов может не быть, поскольку торговая стратегия может предполагать удержание позиции до истечения опционов. В такой ситуации, если опцион истекает вне денег, сигнал на открытие позиции остается без закрывающего сигнала. Если же на дату экспирации опцион оказывается в деньгах, то сигналу, открывающему позицию по опциону, соответствует закрывающий сигнал по базовому активу. Причем оба сигнала могут иметь одну направленность – на покупку или на продажу.
Исполнение сигнала на открытие позиции по любому финансовому инструменту означает, что система обнаружила отклонение аналитически выведенной справедливой стоимости данного инструмента от его рыночной цены. Такое отклонение может сколь угодно долго сохраняться на рынке. Однако, даже если расчет был правильным, сближение рыночной и расчетной цен может не произойти в течение всего жизненного цикла стратегии. Вследствие этого разработчик никогда не сможет оценить, верен ли был расчетный алгоритм, заложенный в систему. В отличие от этого, опционы обладают жестко зафиксированной датой истечения. По прошествии этой даты можно со всей определенностью сделать выводы о корректности оценки справедливой стоимости. Такое свойство выгодно отличает опционы от других активов, для которых невозможно объективно определить период проверки расчетного значения справедливой стоимости.
На каждый базовый актив существует множество опционов, соответствующих разным страйкам и датам истечения. При этом в любой момент времени часть из них может быть переоценена, а часть – недооценена. Это позволяет создавать большое количество опционных комбинаций с короткими позициями по недооцененным опционам и длинными позициями по переоцененным.
Количество доступных для инвестора опционов, обращающихся на организованном рынке определяется по следующей формуле:
где n – количество базовых активов, mᵢ – количество опционов для i-го базового актива (равное произведению количества страйков на количество временных серий). Для одного базового актива можно построить 3mi комбинаций (будем считать, что каждый опцион может не входить в комбинацию вообще или входить в нее только в единичном числе в «коротком» или «длинном» варианте). Соответственно, для n базовых активов число возможных опционных комбинаций равно:
Предположим, что инвестор работает всего с сотней базовых активов (а опционабельных активов на самом деле гораздо больше), на каждый из которых активно торгуется порядка 10 разных опционных контрактов. В этом случае на каждый момент времени существует теоретическая возможность построить более 6 млн комбинаций. И это при допущении, что все опционы входят в комбинации в равных пропорциях. Если же предположить вполне реальную возможность неравных соотношений для разных опционов в пределах одной комбинации, и учесть, что только на рынке акций США существует несколько тысяч акций с более или менее активно торгуемыми опционами, то получится воистину огромное количество потенциальных комбинаций.
Естественно, ни один инвестор не станет рассматривать все произвольно сгенерированные комбинации, а ограничится лишь теми, профиль платежной функции которых соответствует его торговой стратегии. Кроме того, потенциально приемлемые комбинации должны пройти дополнительный отсев по ликвидности, спреду, предстоящим корпоративным событиям, фундаментальным показателям и многим другим параметрам. Тем не менее после применения всех фильтров останется порядка миллиона комбинаций, представляющих собой исходное множество для автоматизированной торговли. Подобное многообразие невозможно для акций, товаров, валют или любого другого физически существующего инструмента.