bannerbannerbanner
полная версияДиаграммы Пенроуза – что это такое?

Петр Путенихин
Диаграммы Пенроуза – что это такое?

Полная версия

2

M

-диаграмма Пенроуза

Из полученной диаграммы мы так же можем сформировать и так называемое максимально расширенное решение Шварцшильда для вечной Чёрной дыры – рис.14 и рис.6f, содержащее сингулярности и параллельную Вселенную. Для этого необходимо заменить обозначения r = ‑∞ на r = 2m. Понятно, что на оси i0i0 значения r = const также следует заменить на соответствующие. Диаграммы с левым значением 2m назовём 2M-диаграммами Пенроуза.

На диаграммах этого вида сразу же обнаруживается противоречие: на такой диаграмме невозможно корректно произвести разметку координатных линий времени. Иначе говоря, на диаграммах с левым горизонтом событий r = 2m равномерная шкала времени t = const становится невозможна. В первую очередь это связано с тем, что разметка линий r = const потребовала специфического подхода: шаг, расстояние между двумя линиями r = const на всём протяжении диаграммы неизменным сделать невозможно.

Действительно, чтобы обеспечить традиционный вид координатной сетки, мы должны слева и справа диаграммы нанести одинаковое количество дуг r = const. Но слева диапазон расстояний конечен и равен некоторому количеству координатных дуг, а справа – он бесконечен. Какое бы определённое значение для центральной оси r0 = const мы ни выбрали, кроме r0 = ∞, интервал слева также будет конечным. Но главная проблема не в этом. Поскольку левая часть диаграммы – это горизонт событий Чёрной дыры r = 2m, дискретность координатной сетки должна экспоненциально уменьшаться. Чем ближе к горизонту, тем мельче деления шкалы, интервалы между линиями. Это исключает любую возможность установить их конечное количество, которое стремится к бесконечности. Справа от центра диаграммы число координатных линий также стремится к бесконечности, но дискретность этой сетки может быть как постоянной, так и экспоненциально изменяющейся – возрастающей или убывающей. В любом случае пределом этой шкалы должна быть бесконечность.

Можно воспользоваться следующим очевидным способом преобразования на квадратной диаграмме левого бесконечного горизонта в конечный. Это простое вытягивание, смещение линии координатной сетки r = 2m до положения левого горизонта событий. Остальные линии сетки левее этой просто "выталкиваются" за пределы диаграммы рис.6. Однако анализ показал безуспешность этого способа.

Как показано на рисунке стрелкой, координатная времениподобная линия r = 2m скачкообразно, пошагово перемещается сначала в нулевую позицию в центре диаграммы, затем в точки ‑1m (рис.6b), ‑2m (рис.6с), ‑4m (рис.6d), ‑7m (рис.6e), ‑10m (рис.6f). При этом в центре диаграммы поочерёдно оказываются координатные линии, соответственно, r = 3m, r = 4m, r = 6m, r = 9m, r = 12m. Разметка сетки при этом сохраняет свой исходный изотропный и конформный вид. Все нулевые геодезические и световые конусы, как ожидается, также сохраняют свои свойства.


Рис.6. Преобразование диаграммы в 2M-диаграмму


Очевидно, что после завершающего перехода координатной линии r = 2m на позицию левого горизонта событий, в центре диаграммы окажется координатная линия со значением +∞. Также очевидно, что никакие геодезические на конечном удалении от горизонта событий в этом случае изобразить на такой диаграмме будет уже невозможно: все они сожмутся в бесконечно тонкую линию вблизи левого горизонта событий. С другой стороны, сдвигаемая влево времениподобная координатная линия r = 2m никогда не превратится в светоподобную линию горизонта событий, в пределе оставаясь от неё на планковском удалении. В этом случае очевидно, что любое изображённое на диаграмме событие или движение не будет иметь никакого отношения к горизонту событий Чёрной дыры. Движение даже к его отдалённой окрестности, например, до r = 1000m будет длиться вечно, только внешне напоминая падение на горизонт r = 2m. Визуально, ввиду мелкой детализации, будет казаться, что эта линия является корректным горизонтом событий (рис.6f), но при увеличении масштаба (как под микроскопом) фактически не будет никакого различия для значений этих промежуточных "горизонтов". В равной степени мы можем поставить возле них вместо r = 2m как r = 2000m, так и r = –∞, характер диаграммы будет в точности таким же. В целом эта диаграмма становится тождественной обычной диаграмме с двумя пространственноподобными бесконечностями i0.

Ещё одной серьёзной проблемой является то, что из-за различной дискретности сетки слева и справа диаграммы, использовать постоянные значения интервалов на всей шкале невозможно. Конечность интервала слева исключает такую возможность. То есть, мы в принципе можем установить шаг делений справа Δr = 1 = const, либо иной другой постоянный шаг. Но на левой стороне диаграммы никакой постоянный шаг невозможен. Получается, что сетка диаграммы должна быть размечена двумя разными шкалами, что, очевидно, весьма неудобно.

Однако есть вариант компромиссной шкалы, единой на всём диапазоне расстояний. Это шкала r, размеченная степенным рядом. Каждому делению шкалы присваивается значение 2+2n, где n – номер линии r имеет значения от ‑∞ до +∞. На такой диаграмме для наглядности центру может быть приведена в соответствие, например, координата r = 4m, соответствующая номеру n = 1.

В литературе на такие 2M-диаграммы координатная сетка наносится крайне редко, а если и наносится, то условно, без каких-либо обозначений, шкал. При этом светоподобные геодезические и световые конусы используются широко. Поэтому попытка аналитически построить соответствующую координатную сетку вполне оправданна. Выбор уравнения степенного ряда для сетки r = const позволил вполне приемлемо такую сетку построить.

Однако компромиссная шкала имеет собственную проблему. На диаграммах с такой шкалой оказалось невозможным корректно изобразить световые конусы, поскольку на них светоподобные геодезические оказались кривыми линиями. Проблема вызвана тем, что на такой диаграмме невозможна равномерная шкала времени – возникает так называемая анизотропия времени.

Алгоритм построения диаграммы Пенроуза

Исходя из возможных видов координатных параметров в трёхмерном пространстве, можно выделить четыре различные системы координат. Параметрами, задающими однозначное положение объекта в трёхмерном пространстве должно быть три. При использовании в качестве таких параметров линейных отрезков – ρ или углов – φ, можно сформировать четыре группы, четыре набора координатных параметров:

3ρ+0φ (три линейных параметра и ни одного углового). Это обычная декартова система ортогональных координат;

1ρ+2φ – это классическая полярная система координат;

0ρ+3φ – это широко применяемая в астрономии, космологии система координат, которая в такой формулировке явно, детально нигде не описана;

2ρ+1φ – система координат, об использовании которой ничего не известно.

Декартова и полярная системы координат широко известны, и в пояснениях, видимо, не нуждаются. Третья система, космологическая использует, в частности, три опорные, реперные точки, образующие треугольник с известными сторонами. Из этих точек определяются три координатных угла до исследуемого объекта в космосе, в результате чего образуется треугольная пирамида, в которой можно вычислить длины её граней. Может возникнуть ощущение, что на самом деле используется 6 параметров. Но стороны реперного треугольника на самом деле не влияют на величину удалённости объекта в космосе и на расстояния между ними.

Декартова, ортогональная система координат имеет разновидности по используемой градации, разметке осей. Чаще всего это линейные, равномерные градации. Также часто используются оси с логарифмической градацией. Эти системы позволяют отобразить объекты и процессы конечной протяжённости. Рассматриваемые диаграммы Пенроуза являются вариантом декартовой системы координат в обычном смысле этого понятия, шкалы осей которой "скомпрессированы", то есть, сжаты по определенному алгоритму. По аналогии с понятием "логарифмическая" шкала, такой алгоритм можно назвать алгоритмом "тангенсического" сжатия. Понятно, что в данном случае для сжатия шкалы вместо функции логарифм используется функция тангенс, вернее, его обратная функция – арктангенс.

Процесс такого сжатия шкал или процесс конформного преобразования представляет собой, по сути, построения новой шкалы для координат расстояния r и времени t как функции от этих переменных в некоторой исходной системе координат u-v (1).

Иначе говоря, мы строим в системе координат u-v семейство линий, которые образуют новую координатную сетку. При этом из уравнений видно, что новая сетка оказывается заключенной в квадрат со стороной π, поскольку при изменении величин r и t в диапазоне от минус до плюс бесконечности, функции u и v изменяются в диапазоне от минус π/2 до плюс π/2.

Для нанесения координатной сетки сначала для каждого значения t = ‑n, …, ‑2, ‑1, 0, 1, 2, …, n строится сплошная линия r = ‑m…m. При этом на диаграмму наносятся дуговые линии, вытянутые от i- к i+. Затем для каждого значения r = ‑m, …, ‑2, ‑1, 0, 1, 2, …, m строится сплошная линия t = ‑n…n. При этом на диаграмму наносятся дуговые линии, вытянутые между точками i0.

При таком построении сетка одной из осей будет иметь вид рис.7a. Как видно на рисунке, сетка получилась с наклоном. Для наглядности на сетке показаны действительные оси координат u-v, в которых она построена, и конформные оси t-r, которые и предполагается использовать в дальнейшем. Для приведения масштабной сетки к обычному виду, когда её нулевая ось расположена либо вертикально, либо горизонтально, полученную сетку нужно просто повернуть на 45 градусов против часовой стрелки. В этом случае мы получим сетку оси времени t, как показано на рис.7b. После этого мы можем нарисовать по указанным уравнениям конформного преобразования вторую масштабную сетку и повернуть её теперь на 45 градусов по часовой стрелке. В результате мы получим сетку оси r, как показано на рис.7с. Объединив эти обе сетки, мы получим полную сетку диаграммы, как показано на рис.7d. Теперь мы можем нанести на рисунок все необходимые обозначения, в результате чего будет получена полная "пустая" диаграмма Пенроуза, как показано на рис.7e. Слово "пустая" означает, что на диаграмме нет никаких событий, мировых линий.

 
Рейтинг@Mail.ru