Можно задаться вопросом, а почему использованы именно эти сильно нелинейные тригонометрические функции? Дело в том, что из множества элементарных функций только тангенс изменяется в диапазоне от минус бесконечности до плюс бесконечности при изменении аргумента в фиксированном диапазоне (от -90 до +90 градусов). То есть, функционально демонстрирует связь между конечным и бесконечным диапазонами. Поэтому изменение бесконечных расстояния и времени, как аргументов, преобразуется в изменение новых аргументов в ограниченном диапазоне.
Заметим, что поместить бесконечное пространство-время на диаграмме конечных размеров, подобно диаграмме Пенроуза, можно также с помощью других функций, изменяющихся в конечных пределах при изменении аргумента на бесконечном диапазоне. Такими свойствами помимо арктангенса обладает, например, степенной ряд 2‑n (2 в степени минус n) и другие. Создать диаграмму, подобную квадратной диаграмме Пенроуза, можно, например, с помощью следующих показательных функций:
На рис.4a изображена диаграмма, построенная с использованием этих уравнений. Сразу же видим, что диаграмма визуально ничем не отличается от диаграммы с тангенциальным преобразованием рис.5. Для удобства коэффициент m выбран таким, что координатная сетка имеет более равномерное распределение, чем тангенциальная.
Рис.4. Диаграмма на основе показательной функции
Красная линия нанесена на диаграмму таким же способом, как и ранее: соединением диагоналей смежных координатных квадратов, то есть, эта линия для координат u-v является прямой линией. В данном случае координаты её последовательных точек описываются уравнением прямой (дуги) вида u + v = 11.
После построения полной координатной сетки из дуг, диаграмму следует повернуть на 45 градусов, вследствие чего дуги становятся координатными линиями r = const и t = const, а ставшие наклонными прямые линии становятся нулевыми геодезическими. Изображённая на рисунке рис.4b дуга в этом случае становится координатной линией.
То, что диаграмма Пенроуза в форме ромба (квадрата) имеет сходство с декартовой системой координат наглядно показано на рис.5. На рисунке изображена обычная система координат Декарта, но оси подвергнуты преобразованию, во многом напоминающем логарифмическую сетку. Главное отличие состоит в том, что логарифмическая шкала имеет бесконечную протяжённость. Здесь же используется преобразование φ = arctg(x), θ = arctg(y). Соответственно, по координатам x и y откладываются не эти величины, а их арктангенсы. При изменении параметров x и y в пределах от минус до плюс бесконечности, каждый из параметров φ и θ изменяется в конечном диапазоне от –π/2 до +π/2.
На такой двухкоординатной диаграмме Декарта можно изобразить в виде плоскости всю бесконечную Вселенную. На рисунке рис.5a явно не видно, что диаграмма (система координат) является изотропной, поскольку на ней традиционные лучи света изображены кривыми линиями, дугами. Координаты лучей света описываются уравнениями y = ±x+C, то есть, единичному приращению координаты x соответствует такое же единичное приращение координаты y. На координатной сетке эти световые линии являются диагоналями единичных координатных квадратов.
Пометим на рис.5a точками abcde несколько смежных диагоналей квадратов координатной сетки. Под квадратом понимается прямоугольник со сторонами x = y = 1, хотя действительно квадратами выглядят только диагональные.
Рис.5. Конформная декартова диаграмма Пенроуза до и после поворота
Тем не менее, аналитически в системе координат x-y рисунка рис.5a любая из таких дуг описывается уравнением y = ±x + C, то есть, является линией с наклоном в 45о к осям этих координат. Это можно отчетливо увидеть по значениям координат точек abcde. Метрически вдоль осей φ и θ откладываются значения углов, но обозначаются эти точки соответствующими величинами арктангенсов.
Такие же последовательности координат (x, y) можно составить и для всех других возможных точек, в нашем случае с целочисленными координатами, для любой подобной же кривой-дуги на диаграмме. Обратив внимание на явную закономерность, запишем уравнения этих линий в более компактном общем виде:
Смысл этого уравнения кажется достаточно очевидным: это обобщённое уравнение всех возможных кривых линий на рис.5a в системе конформных сжатых осей x и y. Значения φ и θ откладываются вдоль тех же осей x и y (оси коллинеарны), но по их собственной шкале от ‑π/2 до +π/2, в чем, собственно, и состоит конформное сжатие, то есть, диаграмма Пенроуза – это квадрат со сторонами, равными π.
Из уравнения (2) следует, что каждая дуговая линия имеет некий номер C и соответствующее ему уравнение при любых значениях x и y на всей числовой оси. Иначе говоря, константа C является обобщённым обозначение номеров кривых линий. Теперь вспомним, что все эти кривые линии мы построили, соединяя диагонали смежных четырёхугольников. Можно назвать эти линии удлинёнными диагоналями. Но на этом же рисунке видно, что и прямые линии исходной, тангенциальной сетки являются в свою очередь точно такими же удлинёнными диагоналями, если координатной сеткой считать кривые линии, дуги. То есть, наборы прямых и кривых линий являются по отношению друг к другу координатными сетками. Иначе говоря, имея указанную сетку из кривых линий, мы таким же образом можем построить и прямые линии, просто соединяя диагонали смежных криволинейных четырёхугольников.
Если теперь уже дуги рассматривать как координатную сетку, то обнаружится, что номера дуг остались теми же самыми. То есть, дуга, проходящая через координату xy(3,0) и имеющая, соответственно, номер C = 3, точно также проходит через такую же координату rt(3,0) и имеет точно такой же номер C = 3. Вот здесь мы и обнаруживаем конформную взаимосвязь между координатами x-y и координатами r-t, описываемую уравнениями арктангенсов.
В декартовой системе координат на рисунке рис.5 массивы прямых ортогональных линий и криволинейных условно ортогональных линий образуют каждая своеобразную координатную сетку. То есть, на рис.5a в качестве координатной сетки мы использовали прямые линии и построили в этих координатах массивы криволинейных линий. Но и, наоборот, эти кривые линии мы можем рассматривать также как линии координат, сетку. На рисунке рис.5a оси координат r-t и их дуга abcde имеют наклон в 45 градусов.
Хорошо видно, что эта диаграмма Декарта на рис.5a оказалась похожей на квадрат диаграммы Пенроуза рис.2, только без поворота (и с единственной дугой). Если теперь эту диаграмму Декарта повернуть на 45 градусов и добавить остальные дуги, мы получим классическую диаграмму Пенроуза. При этом окажется, что бывшие прямые координатные линии превратились в изотропные нулевые геодезические, линии света, а декартовы линии света – в координатные линии диаграммы Пенроуза рис.5b. Линейные размеры, координаты новой оси r изменяются в некоторых ограниченных пределах (точнее, от –π/√2 до +π/√2), в то же время как каждой из них присваивается значение C:
Обратив внимание на то, что знак в выражении (2) соответствует ортогональным дугам, раскрыв его и подставив в выражение (3), мы получаем два уравнения конформного преобразования между координатами r-t и x-y:
Особо отметим обнаруженную интересную особенность рассмотренного метода конформных преобразований координат: поворот сетки позволяет поменять ролями сетку и нулевые геодезические. Нанесение желаемых светоподобных геодезических позволяет по ним построить, получить затем соответствующую координатную сетку. Если теперь нанести на полученную диаграмму все обозначения, соответствующие традиционной ромбовидной диаграмме Пенроуза с бесконечными границами и все дуги, мы получим диаграмму рис.2.
Здесь мы наглядно видим сущность конформного преобразования на диаграммах Пенроуза. На рис.5a вертикальные и горизонтальные прямые линии образуют нелинейную координатную сетку. Мы принимаем скорость света равной единице c = 1. Производная уравнения движения какого-либо объекта – это его скорость. Для света можно записать
Здесь производная – это тангенс угла наклона графика к вертикальной оси на диаграмме, к оси времени. Условно говоря, график движения света проходит диагонально через "квадратики" координатной сетки. Это демонстрирует линия abcde на рис.5a. Понятно, что при нелинейной градации координатной сетки "квадратики" условны, визуально все они являются прямоугольниками. Тем не менее, график света всё равно проходит диагонально через эти прямоугольники. То есть, линия abcde является линией света. В таком виде она, во-первых, не выглядит конформной, наклонённой под 45 градусов, а, во-вторых, сильно искривлена. Однако между этой линией и координатной сеткой есть однозначная связь: в каждом "квадратике" конформность и прямолинейность линии просматривается отчётливо.
Для нас, в сущности, не имеет значение, как выглядит координатная сетка, для нас важно, чтобы линии света были конформными, изотропными. И здесь следует отметить гениальную догадку Картера-Пенроуза. Они заметили, что координатная сетка выглядит как изотропные линии света, если за оси координат взять диагональные линии. Для этого нужно просто повернуть квадрат на 45 градусов – рис.5b. Теперь бывшие ранее координатной сеткой линии все стали выглядеть как изотропные линии света. Все они наклонены под 45 градусов и строго прямолинейны.
Бывшие ранее линиями света криволинейные линии, в частности, линия abcde сохранили строго однозначную связь с теперь уже прямолинейными линиями, которые теперь можно считать линиями света. То есть, эту криволинейную сетку мы можем, соответственно, рассматривать как координатную. Поставленный на диагональ квадрат теперь отвечает главному требованию: диагональные линии на нём стали изотропными линиями света. Они прямолинейны и имеют угол наклона в 45 градусов.