Коробка скоростей – механизм, являющийся важной составной частью токарно-винторезного станка, предназначается для передачи вращения от электродвигателя к шпинделю, в котором крепится обрабатываемая заготовка (или деталь).
Коробка скоростей размещается внутри так называемой передней бабки станка, представляющей собой литую чугунную коробку больших размеров, внутри которой находится также шпиндель – в виде полого вала.
Коробка скоростей состоит из зубчатых колес, валов и других элементов, служит для приведения шпинделя во вращение, а также для изменения его частоты вращения внутри чугунного литого корпуса передней бабки.
Принцип работы коробки скоростей одинаков во всех конструкциях токарно-винторезных станков вплоть до станков нового поколения с числовым программным управлением.
Коромыслово-кулисный механизм – рычажный четрехзвенный механизм, в состав которого входят коромысло и кулиса. Этот механизм служит для преобразования качательного движения входного звена (коромысла или кулисы). Коромысло и кулиса взаимодействуют посредством шатуна. Особенностью коромыслово-кулисного механизма является возможность размещения осей симметрии зон качания входного и выходного звеньев под углом, близким или равным 60°. Коромыслово-кулисный механизм применяется в некоторых станочных автоматических линиях машиностроительных производств.
Кран-укосина – подъемный механизм, имеющий небольшие (сравнительно) размеры, предназначен для подъема крупногабаритных деталей различных машин или оборудования с одновременным перемещением на расстояние, равное длине его верхнего рычага – балки. Кран-укосина имеет простое устройство: стойку-опору, вокруг которой вращается укосина в виде рычага-балки. По рычагу-балке перемещается при помощи лебедки колесошкив, через которое потянут трос с чашками-крюками на конце для подъема груза и его перемещения. Лебедка приводится в действие от небольшого электродвигателя, размещенного в верхней части крана-укосины. Кран-укосина обычно устанавливается на ремонтных участках цехов.
Кривошип – вращающееся звено шарнирного или рычажного механизма, которое может совершать полный оборот вокруг неподвижной оси. Конструктивно кривошип выполняют в виде детали с двумя отверстиями, или цапфами – элементами вращательных цилиндрических пар. Одна из пар в плоском механизме может быть сферической для компенсации перекосов осей звеньев. В пространственном механизме пару, в состав которой входят два подвижных звена, обычно выполняют сферической. Кривошип конструктивно совмещают с маховиком или колесом, а также выполняют в виде эксцентрика или коленчатого вала.
Кривошипно-коромысловый механизм выполняется в виде четырехзвенного механизма, в состав которого входят кривошип и коромысло. Данный механизм служит для преобразования вращательного движения кривошипа АВ в качательное движение коромысла СД или наоборот – качательного движения коромысла во вращательное движение кривошипа. Кривошип АВ соединен с коромыслом СД посредством шатуна ВС. Функция положения кривошипно-коромыслового механизма связывает угол качания коромысла ψ с углом поворота кривошипа φ.
За один оборот кривошипа коромысло поворачивается на угол ψ0 в одну сторону и на такой же угол в другую сторону. При качании коромысла от одного крайнего положения до другого кривошип поворачивается на угол φ0 ≠ 180°. Обычно размеры звеньев указанного механизма подобраны таким образом, что за половину оборота кривошипа φ0Z коромысло совершает полное качание φ0Z в одну сторону. Функция положения кривошипно-коромыслового механизма имеет симметричный вид. Кривошипно-коромысловые механизмы широко используются на нефтепромыслах в виде качающих нефть устройств (над скважинами).
Кривошипно-ползунный механизм представляет собой рычажный четырехзвенный механизм, в состав которого входят кривошип и ползун. Данный механизм служит для преобразования вращательного движения кривошипа в возвратно-поступательное движение ползуна или, наоборот, возвратно-поступательного движения ползуна во вращательное движение кривошипа. Кривошипно-ползунный механизм имеет звенья: кривошип АВ, шатун ВС, ползун, шарнирно соединенный с шатуном в точке С, и неподвижную направляющую ползуна. Условия функционирования такого механизма выражаются отношениями: АВ ≤ ВС, е < ВС – АВ (е – расстояние). В общем виде направляющая механизма отстоит от опоры А на расстоянии е. В некоторых случаях ось ее проходит через центр опоры А, т. е. е = 0.
Центры шарниров кривошипа и шатуна располагаются на одной линии. Кривошип при движении ползуна вправо поворачивается на угол → φ0 – 180°. Углы поворота кривошипа при движении ползуна в одну и другую сторону одинаковы.
Перемещение S точки С в зависимости от угла поворота кривошипа характеризуется функцией положения механизма. Полный ход в одну сторону обозначен S0. Передаточная функция имеет симметричный вид при е = 0. Асимметричную функцию при е ≠ 0 получают, когда требуется, например, обеспечить медленное движение ползуна в одну сторону и быстрое – в другую. Кривошипно-ползунный механизм используют очень широко в двигателях внутреннего сгорания, гидроподъемных машинах, прессах и других устройствах.
Кронштейн – относительно простое устройство, предназначенное для фиксирования какого-либо инструмента, детали, прибора (в том числе санитарнотехнических приборов в жилых домах и производственных зданиях, учреждениях и др.).
Кронштейны (верхний и нижний) установлены, например, в опиловочных станках модели 873. В этом станке напильник проводят через отверстие стола и отверстие обрабатываемой детали и хвостовую часть закрепляют в патроне, расположенном в верхнем кронштейне. Второй конец напильника вводят в патрон нижнего кронштейна. Расстояние между верхним и нижним кронштейнами регулируют перемещением верхнего кронштейна по штоку и фиксируют зажимными гайками. Кронштейн имеется также в штативе – установочном устройстве, в котором закрепляется измерительная головка, но не устанавливается измеряемая деталь. В данном случае на колонке штатива устанавливается кронштейн, который может перемещаться по ней вверх-вниз и вращаться в любом направлении. Сквозь кронштейн проходит штанга с присоединительным отверстием для измерительной головки, кроме того, штанга штатива может перемещаться в этом кронштейне вдоль своей оси на разную величину вылета. Кронштейн имеется также в таком смежном приборе, как большой инструментальный микроскоп (БМИ). В указанном приборе контур рассматриваемой детали фокусируется перемещением кронштейна по вертикальным направляющим колонки. Кронштейны практически повсеместно используются для крепления трубопроводов и санитарно-технических приборов (в том числе мойки типа МСК и МСУ) в различных зданиях. При установке кронштейнов под трубопроводы обычно используют монтажный поршневой пистолет ПЦ52-1 или сверлильные машины, при этом закрепляют их дюбелями.
Кулачковый вал – металлический стальной стержень, имеющий утолщения в виде кулачка различной формы. На таких валах чаще всего выполняют кулачки, имеющие определенный эксцентриситет, т. е. кулачки являются эксцентриками. Кулачковый вал с эксцентриками (кулачками) широко применяется в гидрораспределителях, где за один оборот данного вала каждый из поршней механизма гидрораспределителя совершает по восемь циклов возвратно-поступательного движения. Примечание: гидрораспределитель (или пневмораспределитель) представляет собой гидроаппарат (пневмоаппарат), предназначенный для изменения направления потока рабочей среды в двух или более гидролиниях (трубах, рукавах, шлангах, каналах) в зависимости от внешнего управляющего воздействия.
Кулачковый механизм – механизм, в состав которого входит кулачок. В различных отраслях промышленно-хозяйственного комплекса России широко применяются кулачковые механизмы в разных вариантах.
Вариант первый: в механизме кулачок имеет рабочую поверхность переменной кривизны и образует с взаимодействующим с ним звеном высшую пару. Задавая соответствующий профиль кулачку, можно очень легко получить любой закон движения взаимодействующего звена. В этом существенная особенность кулачкового механизма.
Вариант второй: кулачковый механизм используется для преобразования вращательного движения кулачка в качательное движение коромысла или в поступательное движение толкателя в третьем варианте.
Вариант четвертый: кулачковый механизм применяется для того, чтобы поступательное движение кулачка преобразовать в качательное движение коромысла.
Вариант пятый: кулачковый механизм осуществляет преобразование поступательного движения кулачка в поступательное движение толкателя. Толкатель или коромысло может непосредственно контактировать с кулачком (в кулачковом механизме) и иметь при этом криволинейный участок (первый вариант), заостренный наконечник (второй вариант) или плоскую рабочую поверхность (третий вариант), а может также иметь на конце ролик (четвертый вариант), что позволяет уменьшить потери энергии на трение в кулачковом механизме. Кулачковый механизм бывает плоским или пространственным, причем во многих вариантах (более 20). В первом случае (плоский кулачковый механизм) точка кулачка и взаимодействующего с ним звена совершает плоское движение, параллельное одной и той же неподвижной плоскости. Во втором случае (пространственный кулачковый механизм) это условие не выполняется. Пространственный кулачковый механизм имеет цилиндрический (в двух вариантах), дисковый, конический, сферический (в двух вариантах), глобоидный (в двух вариантах) кулачок. При многократном повторении элементов кулачка и взаимодействующего с ним звена получается кулачковый механизм для изменения параметров вращательного движения (в двух вариантах) или преобразования вращательного движения в поступательное. Такого типа кулачковый механизм может быть отнесен к червячной передаче с глобоидным или цилиндрическим червяком и с цевочным колесом или зубчато-цевочной реечной передачей. В различных машинах и механизмах широко применяются и другие разновидности кулачкового механизма, например, многооборотный кулачковый механизм: спиральный кулачок; регулируемый кулачок.
Кулачок – звено какого-либо механизма, имеющее элемент высшей пары, который выполнен в виде поверхности переменной кривизны. Формы кулачков характеризуются профилем и выполнением боковых сторон. Широко применяются в различных машинах и станочных автоматических линиях машиностроительных производств кулачки трех видов профиля.
Кулачки треугольного профиля применятся для передачи малых крутящих моментов. Муфты с такими кулачками имеют малый угол включения α. Симметричный профиль используется для передачи моментов в обоих направлениях, а несимметричный – только в одном направлении. Число кулачков такого профиля, устанавливаемых в управляемых соединительных муфтах, составляет от 15 до 60 шт.
Кулачки трапецеидального профиля применяются для передачи больших крутящих моментов. Симметричный профиль кулачков пригоден для передачи моментов в обоих направлениях, а несимметричный профиль – только в одном направлении. Число кулачков данного профиля в соединительных муфтах (сцепных) обычно составляет от 3 до 15 шт.
Кулачки прямоугольного профиля применяются редко ввиду трудности включения таких муфт и невозможности получения беззазорного сцепления. Кулачки указанного профиля со скошенной вершиной существенно облегчают включение, но пригодны для передачи момента только в одном направлении. Боковые стороны кулачков прямоугольного профиля выполняются в виде плоскостей, проходящих через геометрическую ось муфты. Боковые стороны кулачков треугольного и трапецеидального профилей, ограниченные винтовыми поверхностями, обеспечивают прилегание по площади при сцеплении соединительной муфты как на полную, так и на неполную рабочую высоту кулачков, т. е. в течение всего процесса включения и выключения соединительной муфты. Но ввиду сложности технологии обработки такие кулачки применяются редко. Обычно же их боковые стороны выполняются по плоскостям, которые полностью прилегают друг к другу только при заходе кулачков на полную рабочую высоту. Кулачки прямоугольного и трапецеидального профилей постоянной высоты требуют раздельной обработки каждой боковой стороны кулачка. Кулачки треугольного и трапецеидального профилей с уменьшающейся к центру высотой позволяют обрабатывать обе стороны впадины за один проход.
Кулиса представляет собой звено рычажного механизма, вращающееся вокруг неподвижной оси и образующее с другим подвижным звеном поступательную пару.
Кулису конструктивно выполняют в виде направляющей детали, охватывающей другую деталь и имеющей большую или малую длину по сравнению с длиной охватываемой детали. Кулиса может также охватываться сопряженной с ней деталью.
Кулисный механизм – рычажный механизм, в состав которого входит кулиса. В различных машинах, станках и другом оборудовании широко применяются различные виды кулисного механизма:
1) кулисно-ползунный механизм;
2) кривошипно-кулисный механизм;
3) двухкулисный механизм;
4) коромыслово-кулисный механизм.
Кулисно-ползунный механизм – рычажный четырехзвенный механизм, содержащий кулису и ползун с неподвижной направляющей. Такой механизм служит для преобразования качательного движения кулисы в поступательное движение ползуна или наоборот, поступательного движения ползуна в качательное движение кулисы.
Кривошипно-кулисный механизм — рычажный четырехзвенный механизм, в состав которого входят кривошип и кулиса. Указанный механизм служит для передачи и преобразования вращательного движения кривошипа во вращательное или качательное движение кулисы и, наоборот, движения кулисы во вращение кривошипа. Кривошипнокулисный механизм используется весьма широко в строгальных, долбежных станках, упаковочных автоматах и других машинах.
Двухкулисный механизм – рычажный четырехзвенный механизм, в состав которого входят две кулисы.
Данный механизм служит для передачи вращательного или качательного движения от одной кулисы к другой; используется в компенсирующих муфтах (благодаря тому, что передаточное отношение двухкулисного механизма постоянно и равно единице).
В этом механизме кулисы взаимодействуют посредством промежуточного звена – шатуна.
Крейцкопф (нем. Kreuzkopf) – то же, что и ползун.
Крейцкопфный двигатель – двигатель внутреннего сгорания, как правило, дизельный, в котором шатун и поршень связаны между собой крейцкопфом (ползуном). При работе двигателя крейцкопф передает продольное (по ходу поршня) усилие на шатун, а поперечное – на направляющие, освобождая тем самым поршень от поперечных нагрузок, что уменьшает износ цилиндров и поршня. Вследствие значительной массы и некоторых конструктивных особенностей такой двигатель применяется только на судах (морских или речных).
Лебедка – грузоподъемная машина, используемая для перемещения грузов посредством движущегося каната (или троса, или цепи). В различных отраслях промышленно-хозяйственного комплекса России широко применяются лебедки трех видов: лебедка двухбарабанная; лебедка двухскоростная; лебедка соосная.
Лебедка двухбарабанная является грузоподъемным механизмом, содержит два барабана, кинематически связанных между собой. Такая лебедка, в частности, применяется в грейфере; она имеет два двигателя (электрических) и два барабана, соединенных одним дифференциальным механизмом и тремя передачами. В данном случае ковш грейфера поднимается и опускается двигателем при остановленном втором двигателе. При этом оба барабана вращаются с одинаковой угловой скоростью независимо от распределения нагрузки между ними, потому что дифференциальный механизм работает как редуктор с одной степенью свободы. Для управления челюстями ковша грейфера служит замыкающий барабан лебедки, приводимый в движение относительно первого барабана вторым электродвигателем через дифференциальный механизм. Лебедка двухбарабанная также устанавливается на башенных кранах, где один барабан является грузовым, а второй – стреловым. Привод обоих барабанов лебедки башенного крана осуществлен от одного двигателя. Для обеспечения заданной траектории перемещения груза включаются оба барабана.
Лебедка двухскоростная является грузоподъемным механизмом, у которого предусмотрено два режима вращения барабана с разными угловыми скоростями. Данная лебедка применяется в системе поднятия и опускания лифта (грузового или пассажирского), имеет электрический двигатель, соединенный с планетарной зубчатой передачей, встроенной в шкив тормоза; передача может блокироваться специальной муфтой. Ведомое звено соединено с другой планетарной передачей, встроенной в канатоведущий шкив. Это звено останавливается специальным тормозом. Такая схема позволяет обеспечить плавный разгон привода, уменьшить производную ускорения и тем самым улучшить комфортабельность лифта, для которого используется скоростная лебедка.
Лебедка соосная – грузоподъемный механизм, у которого двигатель (электрический), редуктор и барабан установлены соосно. Лебедки соосные имеют обычно встроенный в барабан редуктор (планетарный, составленный из двух механизмов). Внутри барабана установлена также жесткая рама, с которой связано одно из центральных колес первого планетарного механизма и водило второго механизма. Барабан такой лебедки опирается на раму через подшипники, эта рама имеет три внешних сферических опоры. Все три опоры обеспечивают статически определимую систему закрепления лебедки на раме экскаватора и исключают взаимное влияние деформаций рам, а также компенсируют неточности монтажа. Лебедка соосная выполняется в четырех вариантах. В одном из них планетарная замкнутая передача встроена в барабан лебедки, а водило второго механизма, водящего в состав передачи, выполнено управляемым; при этом оно воспринимает реактивный момент. Если нужно быстро разобщить кинематическую цепь и позволить барабану свободно вращаться, то тормоз выключают. Это используют, в частности, в экскаваторах карьерного типа при забрасывании ковша экскаватора. В другом варианте внутрь барабана соосной лебедки встроена планетарная зубчатая передача с тремя центральными колесами. Она имеет большое передаточное отношение, но сравнительно невысокий коэффициент полезного действия. Такое устройство механизма используют в редко включаемых лебедках, например в механизме подъема стрелы экскаватора.
Леникс (нем. Lenix, Lenixrolle) – так назывался натяжной ролик во второй половине XIX – начале ХХ вв., применявшийся в механизмах с клиноременной передачей. Леникс обеспечивал натяжения клинового текстропного ремня большой длины, который был установлен на трех шкивах в системе привода различных механизмов. Благодаря лениксу или натяжному ролику ремень приводной не испытывал сильной вибрации, приводящей к разрыву, а кроме того, при этом обеспечивался достаточно плотный контакт ремня на шкивах. Со второй половины ХХ в. название леникс перестало употребляться в технической документации, а было принято более понятное название – натяжной ролик. Натяжной ролик представляет собой свободно вращающееся дополнительное колесо в виде шкива или звездочки (если вместо ремня применяется цепная передача) в механизме с гибкой связью и воздействующее на эту связь. Для прижатия натяжного ролика к гибкой связи и ее натяжения служит пружина или груз, взаимодействующий с натяжным роликом посредством рычага.
Матрица – специальная металлическая форма, предназначенная для получения каких-либо изделий путем прессования (ручного или машинного). Матрица изготавливается из тугоплавких металлов или сплавов, потому что в нее заливают расплавленный металл (или сплав металлов), имеющий высокую температуру. Матрица используется в основном для получения деталей небольших размеров, причем внутренняя часть ее имеет форму, аналогичную форме изготавливаемой детали. В матрицу набирают (наливают) определенную порцию расплава, которая при движении пуансона вниз перемещается и заполняет пространство между пуансоном и матрицей, при этом формовое кольцо, находящееся в верхней части матрицы, предназначено для создания ровной поверхности верхнего края изделия. Матрицу выполняют разъемной, это позволяет легко извлечь изделие из формы. Формовое кольцо и пуансон матрицы также изготавливают из тугоплавкого металла или сплава, потому что они находятся в контакте с расплавом.
Матрица используется не только для получения изделий из металлов или их сплавов, но также стеклоизделий и изделий из пластических масс.