bannerbannerbanner
Большая энциклопедия техники

Коллектив авторов
Большая энциклопедия техники

Полная версия

Трубопрокатный стан

Трубопрокатный стан – прокатный стан для производства цельноканатных металлических труб, осуществляющий весь технологический процесс, в который входят нагрев, прошивка, раскатка, калибровка, правка, охлаждение. Начинается процесс с нагревания в секционной печи круглой заготовки, на прошивном прокатном стане выполняется прошивка – получение в центре заготовки круглого отверстия, на удлинительном стане происходит раскатка заготовки, ее толщина уменьшается, длина увеличивается, на калибровочном и редукционном стане осуществляется контроль качества полученного изделия, которое охлаждается. Трубопрокатные станы различаются по типам, которые зависят от устройства основного удлинительного стана, который бывает непрерывным, короткооправочным, трехвалковым, пилигримовым.

Непрерывный удлинительный стан. Самый распространенный и производительный – до 600 000 т в год, диаметр труб доходит до 100 мм и более. Непрерывный удлинительный стан – это девять клетей, в которых происходит прокатка трубы длиной более 30 м и со скоростью 400 труб в час. Заданный диаметр трубы получается на редукционном непрерывном стане. Для охлаждения используется транспортер.

Короткооправочный удлинительный стан производит трубы 450 мм в диаметре. Для этого вместе с ним используется один или два прошивных стана. Короткооправочный стан удлинительный – это одна клеть, имеющая валки 650—1100 мм в диаметре, между валками на короткой оправке прокатывается труба. Повторно труба прокатывается в той же клети. В раскатных станах трубу еще раз прокатывают, чтобы получить равную толщину. После труба поступает в калибровочный стан, имеющий несколько клетей. Для охлаждения используется транспортер, а для отделки трубы – система машин.

Трехвалковый удлинительный стан – это стан винтовой прокатки, с тремя валками конической формы, которые вращаются в одном направлении, под углом к оси трубы. Труба движется вдоль нее и вращается в противоположном направлении. На трехвалковом удлинительном стане, как правило, прокатывают трубы с толстой стенкой.

Пилигримовый удлинительный стан – это двухвалковый стан. Во время прокатки при каждом обороте валка труба подается специальным механизмом. На этом стане прокатывают трубы большого диаметра – до 700 мм. Первые трубопрокатные станы появились в конце XIX в. в Швеции. Они были с короткооправочным удлинительным станом. В середине XX в. в России на Урале были построены высокопроизводительные трубопрокатные станы с непрерывным удлинительным станом. Современные трубопрокатные станы имеют высокую производительность, механизацию, автоматизацию и качество выпускаемых изделий. Дальнейшее их совершенствование направлено на улучшение этих основных характеристик и использование новых технологий.

Чесальные машины

Чесальные машины – машины для расчесывания волокна. Это разделение клочков волокна на отдельные волокна, распрямление и очистка волокон от сора, примесей, коротких волоконцев, образование из разрыхленной массы волокна непрерывной ленты-ровницы. Чесание – это подготовительный процесс прядильного производства, используется для первичной обработки всех видов сырья – шерсти, льна, хлопка, а также искусственных волокон. Процесс чесания различается по способу и виду использованного оборудования и бывает кардный или гребенной.

Кардочесание – это обработка волокна рабочими устройствами – иглами или зубьями.

Гребнечесание – это прочесывание волокна рабочими устройствами – гребнями.

Эти процессы чесания осуществляются на кардочесальных или гребнечесальных машинах.

Кардочесальная машина

Процесс обработки волокна – чесание. Он осуществляется пропусканием волокон между игольчатой или пильчатой лентой, это основные рабочие устройства кардочесальной машины. В процессе чесания происходит освобождение волокон от примесей, сора и разравнивание спутанного волокна.

Кардочесальные машины различаются по типу рабочего оборудования, которое зависит от рода сырья. Для хлопка используют шлепочные машины, для шерсти – валичные чесальные машины.

Поступление волокна на эти машины также различается по способу его подачи, хлопок на шляпочную машину подается равномерным слоем, предварительно разрыхленным на трепальной машине. Поступление шерстяного волокна на валичную машину осуществляется самовесом, отвешивающим одинаковые порции волокна. Шляпочная машина имеет основные рабочие устройства: барабаны – главный, приемный, съемный, а также шляпки.

Шляпки – это пластины игольчатой ленты, они находятся на главном барабанном. Приемный барабан имеет зубья на своей поверхности, он принимает первым волокно и, расчесывая его, очищает от сора. После волокна принимает главный барабан, поверхность которого покрыта игольчатой лентой. Волокно находится между игольчатой поверхностью барабана и шляпками, которые осуществляют чесание, сорные примеси остаются на шляпках, прочесанное волокно попадает на съемный барабан и с него снимается съемным гребнем, проходит через воронку и превращается в плотную ленту. Лента упаковывается в цилиндрическую тару. Чтобы повысить качество чесания, используют машины с двумя главными барабанами. Основными рабочими устройствами валичной машины также являются барабаны: главный, приемный и съемный, бегун и валики: рабочие и съемные, которые попарно окружают главный барабан. Приемный барабан выполняет первичную подготовку волокна, разделяя его на более мелкие волокна, и направляет его на главный барабан, процесс чесания идет между ним и рабочими валиками, с которых съемные валики снимают оставшееся волокно и направляют его снова на главный барабан. Бегун при вращении своими иглами взаимодействует с иглами главного барабана, выводит волокна на его поверхность. Дальше волокна попадают на съемный барабан, разравниваются в густой равномерный по составу слой и снимаются съемным гребнем.

Элеватор (грузоподъемник)

Элеватор (грузоподъемник) – машина, предназначенная для перемещения груза, вертикально или наклонно. Принцип действия непрерывный. Машины различаются по конструкции, которая зависит от области применения. По устройству элеваторы бывают ковшовые, полочные, люлечные. Ковшовые элеваторы поднимают по наклону сыпучие грузы и применяются в горно-перерабатывающих производствах, машиностроении, металлургии, на химических заводах. Элеваторы полочные или люлечные поднимают штучные грузы вертикально и применяются на складах, базах, на различных предприятиях.

Ковшовый элеватор

Его устройство состоит из замкнутого полотна с тягой, к которому прикреплены ковши, полотно огибает натяжной и приводной барабаны. Полотно с ковшами находится в стальном сварном кожухе, загрузка и разгрузка осуществляются через патрубки, установленные в кожухе. Привод ковшового элеватора состоит из электрического двигателя, редуктора, муфты. Натяжное устройство бывает грузовое или натяжное. Характеристики ковшового элеватора: скорость, высота подъема, подача, емкость ковша. Скорость может быть различной – 1—4 м/с. Подача составляет 5—500 м3/ч. Высота подъема – до 60 м.

Полочный элеватор

Его устройство состоит из двух пластинчатых втулочных вертикальных цепей, к которым жестко крепятся полки. Эти захваты – полки – точно соответствуют параметрам поднимаемого груза. Цепи огибают верхние и нижние тяговые устройства. Загружаются полки вручную или автоматически, разгружаются в верхней части. Скорость подъема полочного элеватора ниже, чем у ковшового, и составляет 0,32 м/с, это зависит от характера груза.

Люлечный элеватор

Его устройство во много схоже с устройством полочного элеватора. Различие составляет конструкция крепления рабочего грузоподъемного приспособления – люльки. Она сохраняет горизонтальное положение своего дна, на любом участке подъема, при помощи шарнирного подвеса. Загружается люлечный элеватор при подъеме, разгружается при спуске. Скорость движения такая же, как у полочного элеватора – 0,32 м/с.

Электрокар

Электрокар – самоходное транспортное средство на колесном ходу. Представляет собой тележку с подъемной или неподъемной платформой. Привод электрический от аккумуляторной батареи. Электрокаром управляет водитель, сидя на специально оборудованном кресле или стоя. Электрокары применяются для погрузки на них и перемещения различных грузов на складах, в заводских цехах, в торговле, на транспорте – железнодорожных вокзалах, портах. Такое транспортное средство обладает хорошей маневренностью и простотой в управлении. Имеет большую скорость движения. Конструкция электрокара имеет шасси, аккумулятор, электрооборудование с тяговыми двигателями. Модификации различаются по грузоподъемности и скорости, которые зависят от назначения и применения. Скорость движения доходит до 20 км/ч. Грузоподъемность колеблется от 1 до 100 т и более. Электрокар – эффективное устройство для перевозки груза на небольшие расстояния. Дальнейшее развитие применения электрокаров направлено на использование программного управления, т. е. движение без водителя по специально заданной трассе.

Раздел 3. Сельскохозяйственная техника

Аэрозольный генератор

Аэрозольный генератор – машина, применяемая для химической защиты сельскохозяйственных растений от вредителей.

Генератор состоит из станины с поручнями, двигателя, воздухонагнетателя, приемного воздушного патрубка с фильтрами, напорного воздухопровода, камеры сгорания, бензиновой горелки с краном управления, электрозапальной свечи, магнето, бензинового бака с фильтром, бензопровода, жаровой трубы, рабочего сопла с распылителем, приемника ядохимиката с фильтром. Так как машина не имеет своей емкости для рабочей жидкости, рядом с ней устанавливается резервуар с раствором ядохимиката. Машина устанавливается на кузов автомобиля или на тракторный прицеп соплом против направления движения.

 

Возможно образование аэрозоля из ядохимиката двумя способами – горячим (термомеханическим) и холодным (механическим).

При термомеханическом способе процесс образования аэрозоля протекает следующим образом: вращаемый двигателем воздухонагнетатель засасывает атмосферный воздух и под давлением подает его к бензиновой горелке. Часть воздуха проходит в камеру сгорания, а другая часть воздуха поступает в конус горелки и распыляет бензин. От искры, проскакивающей между электродами запальной свечи, распыленный бензин воспламеняется и сгорает в камере сгорания. В жаровой камере продукты сгорания смешиваются со сжатым воздухом и на скорости горячий газ проходит через диффузор, в котором располагается трубка-распылитель рабочей жидкости. Газ засасывает ядохимикат и через фильтр, шланг и дозирующий кран подает его в сопло. Здесь, смешиваясь с горячим газом, рабочая жидкость распыляется, частично испаряясь, и выходит из сопла. При выходе парогазовая смесь смешивается с наружным воздухом и, быстро охлаждаясь, превращается в белый туман (аэрозоль). Подачу ядохимиката можно регулировать краном. Качество аэрозоля можно регулировать, изменяя температуру сгорания смеси путем управления подачи бензина. Перед тем как запустить двигатель, закрывают кран горелки и кран подачи рабочей жидкости, затем уменьшают частоту вращения вала двигателя и постепенно открывают кран горелки. Вспышку бензина можно определить не только по звуку горения, но и визуально, через смотровое окно. Когда из сопла появляется белый туман, открывают кран подачи ядохимиката. Для того чтобы остановить аэрозольный генератор, сначала закрывают кран подачи ядохимиката, затем – кран подачи бензина. Через 3 мин останавливают двигатель.

При механическом способе образования аэрозоля вместо жаровой трубы устанавливают угловой насадок с краном-дозатором и распылителем. Бензиновой горелкой в данном случае не пользуются. Распыление ядохимиката происходит за счет сжатого воздуха, идущего от воздухонагревателя.

С увеличением численности населения планеты остро встает вопрос о сохранении урожая. Из всех химических методов защиты растений от вредителей сельскохозяйственных культур аэрозольный характеризуется как более эффективный и экономичный.

Создание во второй половине ХХ в. аэрозольного генератора позволило увеличить производительность обработки, распылять рабочую жидкость равномерно, предохраняя листья растений от ожога, соблюдать нормы расхода ядохимиката определенной концентрации на единицу обрабатываемой площади.

Машину можно использовать при обработке не только различных культур полей или садов, но и теплиц, складов.

Ветряная мельница

Ветряная мельница – устройство, работающее за счет энергии ветра, которое используют для измельчения зерна, качания воды, приведения в движение станков.

Ветряная мельница.


Ветряными мельницами пользовались жители Древнего Египта и Китая. Остатки барабанных каменных мельниц II—I вв. до н. э. и сейчас можно увидеть в низовьях Нила. Основной частью этих мельниц было колесо с широкими лопастями, параллельными оси колеса, его устанавливали в барабане таким образом, что половина выступала наружу, ветер надавливал на лопасти, колесо начинало вращаться и приводило в движение мельничный жернов. В VII в. н. э. персами была изобретена мельница с крыльями. В VIII– IX вв. эти мельницы уже были широко распространены на Руси и в Европе – Англии, Дании, Голландии. Благодаря мельницам голландцы освободили от моря бoльшую часть своей территории. В России в начале ХХ в. было около 250 тыс. ветряных мельниц. Ветряные мельницы породили ветряные двигатели.

Виноградниковый плуг-рыхлитель

Виноградниковый плуг-рыхлитель – навесное универсальное орудие для обработки почвы в междурядьях виноградников на равнине, пологих склонах и террасах.

Виноградниковый плуг-рыхлитель имеет сварную раму с шарнирно-поворотными брусьями, которые позволяют изменять ширину захвата орудия и автоматически стабилизировать его рабочие органы, и универсальный рабочий орган, используемый для выполнения рыхления, вспашки и культивации земли в междурядьях виноградников шириной от 2 до 4 м. С помощью рабочих органов, входящих в комплект плуга, его можно использовать для работы в междурядьях лесных насаждений, кустарников, ягодников, как культиваторрыхлитель для межкустиковой обработки, как укрывочный плуг, лозоукладчик, глубокорыхлитель, выкапыватель саженцев, бороздорез, на орошаемых виноградниках. Глубина обработки почвы 8—55 см.

Водяная мельница

Водяная мельница – устройство, работающее за счет энергии падающей воды, используют для помола зерна.

Водяные мельницы для помола зерна появились раньше ветряных. Жители государства Урарту пользовались ими уже в VIII в. до н. э. Колеса первых водяных мельниц были подливными – ось колеса находилась выше уровня воды, напор воды оказывал давление на нижние лопасти. Колеса устанавливались сбоку от здания, построенного на берегу. В Средние века для водяных мельниц появились плотины. Создавался определенный напор воды, чем он был больше, тем больше была мощность колеса водяной мельницы.

Водяное колесо

Водяное колесо – простейший гидравлический двигатель – колесо с лопастями, вращаемое потоком воды.

С помощью водяных колес на поля воду поднимали в Египте, Китае, Индии в I в. до н. э. Колеса были подливными, ось колеса располагалась выше уровня воды, вода давила на лопатки, прикрепленные к внешним частям колеса, приводила его в движение; колесо черпало таким способом воду лопатками-черпаками и поднимало ее на большую высоту, позволяя использовать для работы силу природы. Подобного рода водяные колеса используются в настоящее время в деревнях Африки и Азии.

Волокуша

Волокуша – сельскохозяйственное орудие из системы комплексной механизации процесса заготовки сена, предназначена для сбора сена или соломы из валков в копны и их транспортирования.

Волокуша имеет грабельный аппарат, который состоит из грабельной решетки, боковых, параллельно расположенных пальцев и лобовой рамы. Грабельная решетка образована 11 металлическими пальцами. К лобовой раме прикрепляется прижимная рамка, которая поднимается и опускается выносным гидроцилиндром. Для сбора валков сена или соломы волокуша навешивается на специальное устройство впереди трактора, а для транспортировки готовых копен – на задний механизм навески трактора. Подъем и опускание грабельного аппарата осуществляются гидравлическим механизмом, который работает от гидросистемы трактора.

Процесс подбора валков сена или соломы проходит следующим образом. Грабельную решетку опускают и направляют вдоль валка. Пальцы грабельной решетки поднимают сено, и оно по решетке перемещается до упора в лобовую стенку. Спадание сена в стороны предотвращают боковые пальцы. После заполнения решетки достаточным количеством сена (300—400 кг, в зависимости от тяги трактора) с помощью прижимной рамки копну фиксируют, решетку поднимают в горизонтальное положение и транспортируют копну к месту будущего стога. Там опускают грабельную решетку, прижимную рамку поднимают, освобождают волокушу от копны, двигаясь при этом задним ходом.

Преимущества использования волокуши по сравнению с ручной уборкой сена или соломы заключаются в более полном сборе сена из валков в крупные копны правильной формы, которые расставляются на поле прямолинейно, что удобно для перевозки их к месту стогования или скирдования.

Гончарный круг

Гончарный круг – приспособление для изготовления изделий из глины, работающее благодаря инерции вращения.

Ручной гончарный круг состоит из массивного деревянного диска, который одновременно выполняет и роль маховика, укрепленного с помощью вертикальной оси на деревянной станине.

Левой рукой гончар раскручивает круг, ему нужно во время работы постоянно подкручивать его для поддержания равномерного вращения. Правой рукой мастер формует сосуд. На вылепленное вручную дно в виде круглой пластины укладывает жгутики одинаковой толщины, заранее подготовленные, наращивая виток за витком, увеличивая или уменьшая диаметр витка в зависимости от требуемой формы сосуда. Одновременно, смачивая руку в воде, мастер затирает щели между жгутиками и выглаживает поверхность сосуда. На таком круге одному лепить сосуды сложной формы трудно, поэтому в Древнем Египте и Греции при формовании таких сосудов гончарный круг вращал подмастерье, а гончар работал уже обеими руками.

Дисковая борона

Дисковая борона – сельскохозяйственное орудие, предназначенное для равномерного рыхления почвы с целью уничтожения сорных растений и уменьшения испарения влаги на обрабатываемом поле.

Бороны по массе, приходящейся на один диск, подразделяются на легкие (15 кг), средние (20—25 кг), тяжелые (30 кг). Могут быть прицепными и навесными различного захвата.

Основными рабочими органами являются сферические диски, собранные в батареи и насаженные на общие оси по двухследной схеме, т. е. на раме батареи, собранные из 5—12 дисков, устанавливаются в 2 ряда. Первый ряд делает развальную борозду, второй работает в свал, чем достигается более интенсивное рыхление и выравнивание поверхности поля. Угол установки дисков к линии движения называют углом атаки, его при работе можно менять. Подробно рассмотрим устройство двухсекционной четырехбатарейной бороны. В двух передних батареях по 11 дисков, а в двух задних – по 12. Диски передних батарей установлены выпуклостью внутрь, а диски задних – выпуклостью наружу. Чтобы при бороновании не было пропусков, диски заднего ряда перемещаются в промежутках между дисками переднего. Чтобы изменить угол атаки дисков, внешние концы батарей перемещают и фиксируют брус в отверстиях рамы двумя штырями. У борон этот угол колеблется в пределах от 12 до 25°. Каждая батарея дисков смонтирована на двух шариковых подшипниках. На специальных валиках установлены чистики, на раме укреплены два ящика для балласта. В рабочем положении борона перекатывается на дисках, в транспортном – опирается на два колеса с пневматическими шинами, установленными на коленчатых полуосях. При переводе бороны в транспортное положение гидроцилиндр поворачивает коленчатые полуоси колес, которые, подкатываясь под раму, выглубляют диски.

Навесная тяжелая дисковая борона имеет две секции, в каждой секции по две батареи. Диски батарей передней секции расположены выпуклостью внутрь, задней – выпуклостью наружу. Батареи монтируются на трубчатой сварной раме. К ее трубам прикреплены подшипники с самоподвижными сальниками. На раме также укреплена подвеска для присоединения к трактору. Кроме этого, на раме установлен балластный ящик. Чтобы диски не забивались, около каждого установлены чистики. Предусмотрена возможность установки трех углов атаки: 8, 13 и 18 перестановкой болтов крепления батарей в кронштейнах рамы.

Прицепная тяжелая дисковая борона также имеет четыре батареи, которые соединены в две секции. Каждая из них смонтирована на раме, рамы между собой связаны шарнирно. Каждая батарея состоит из пяти вырезных дисков, насаженных поочередно с распорными втулками на квадратную ось. Батареи крепятся к брусьям рамы. На брусьях укреплены ящики для балласта. Предусмотрена возможность изменения угла атаки: 6, 12, 15 и 18. Опускание в рабочее и подъем в транспортное положения выполняются выносным гидроцилиндром, включенным в гидросистему трактора, или при помощи рычажно-винтового механизма. Другие дисковые бороны отличаются от рассмотренных числом дисков в батареях или конструкцией рамы.

При движении орудия передний ряд дисков разваливает почву, а задний сваливает ее. Глубину хода регулируют, изменяя угол атаки и массу груза в балластных ящиках. Изменением длины верхней регулируемой тяги или перестановкой оси крепления нижних тяг устанавливают равномерное заглубление передних и задних батарей.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131  132  133  134  135  136  137  138  139  140  141  142  143  144  145  146  147  148  149  150  151  152  153  154  155  156  157  158  159  160  161  162  163  164  165  166  167  168  169  170  171  172  173  174  175  176  177  178  179 
Рейтинг@Mail.ru