Зубчатые колеса представляют собой систему, в которую входят два состоящих в зацеплении зубчатых колеса, установленных на валах с одним диаметром. Скорость вращательного движения колес определяется как обратно пропорциональная их диаметру.
Для производства зубчатого колеса применяется в основном сталь, а также чугун, латунь, пластмассы, алюминий. Зубчатые колеса, изготовленные из стали, необходимо усилить, чтобы срок их службы был как можно дольше. Поэтому колеса науглероживают и производят их термообработку, в обязательном порядке усиливанию подвергаются зубчатые колеса, предназначенные для автомобильных передач, а также для дифференциалов.
Плавность качения создается при помощи боковой формы зубьев колес, которая может являться эвольвентной, неэвольвентной передачей Новикова, в которой задается одна или две линии зацепления, и циклоидальной. Храповые механизмы обеспечиваются зубчатыми колесами, характеризующимися несимметричным профилем.
Цилиндрические зубчатые колеса предназначены для параллельных валов. В зацеплении участвуют два колеса; колесо, создающее передающее движение, определяется как ведущее, второе колесо называется ведомым. В случае когда одно из колес является намного меньше второго колеса, то меньшее называется шестерней. В том случае, когда отношение частот вращения ведущего и ведомого колес соответствует единице, зубчатые колеса, участвующие в зацеплении, считаются равными относительно их размера. Передаточное отношение равносильно отношению количества зубьев двух колес. Рассмотрим шестерню с наличием 10 зубьев, которая зацеплена с зубчатым колесом с 40 зубьями. Вращение шестерни с 10 зубьями будет в 4 раза быстрее второго большего зубчатого колеса.
Для расположения зубьев используются внутренняя и внешняя поверхности колеса. Зацепление может быть наружное и внутреннее, если организовано внутреннее зацепление, то колеса вращаются в одном направлении, в случае наружного зацепления колеса создают вращение в противолежащих направлениях.
Цилиндрические зубчатые колеса подразделяются на прямозубые, косозубые зубчатые колеса. Прямозубые – это зубчатые колеса, имеющие зубья, параллельные оси колеса, используются для произведения работ на невысоких и средних скоростях. Косозубые колеса применяют для повышения контактной длины и числа зубьев, вовлеченных в зацепление, позволяющих создать передачу большого момента, а также хорошей плавности при работе, осуществляемой на больших частотах вращения. Косозубые колеса в результате контакта зацепленных зубьев создают осевое усилие, считающееся недостатком этого типа зубчатых колес, поэтому для ликвидации этого неудобства используются шевронные зубчатые колеса, оснащенные V-образными, угловыми косыми зубьями. Зубчатые колеса с косыми зубами предназначены для ответственных передач, производимых на средних и высоких скоростях, составляют третью часть от всех цилиндрических зубчатых колес. Зубчатые колеса с шевронными зубьями используют для передачи больших моментов и мощностей в тяжелых машинах.
Трансформация вращательного движения в линейное перемещение происходит в результате введения зубчатой рейки, которая устанавливается вместо ведомого колеса, при этом зубчатая рейка представляет собой своеобразное зубчатое колесо, имеющее бесконечно большой диаметр.
Конические зубчатые колеса характеризуются прямым углом, образуемым осями зубчатых колес, при этом зубья нарезаются относительно радиусов.
Зубчатые колеса с круговыми зубьями разработаны для участия во всех ответственных конических зубчатых передачах.
Тангенциальные зубья конических колес прямые, однако направлены они не по радиусам.
Спиральнозубые колеса практически идентичны цилиндрическим, главным отличием является нарез зубьев, который способен передавать вращательное движение между взаимно перпендикулярными валами.
Зубчатое соединение – соединение вала и втулки, создаваемое при помощи зубьев, называемых шлицами, и впадин, или пазов, которые изготавливаются на валу, а также в отверстиях втулки.
Самыми распространенными зубчатыми соединениями считаются соединения, подразделенные относительно формы профиля: прямобочные, эвольвентные, треугольные.
Также зубчатые соединения распределяются относительно степени передаваемой нагрузки на тяжелую серию, среднюю и легкую.
При рассмотрении метода для создания центрирования сопрягаемых деталей соединения делятся на центрированные по внутреннему диаметру зубьев, по внешнему диаметру зубьев, по боковым поверхностям зубьев.
Степень подвижности зубьев может быть неподвижная, подвижная и нормальная.
Сложный зубчатый механизм представляет собой приспособление с зубчатыми передачами, в которых участвует свыше двух зубчатых колес. Устройства могут разрабатываться как своеобразной структурной технологией, так и при помощи последовательного, параллельного сочетания самых незатейливых типовых зубчатых приспособлений.
Многопоточные зубчатые механизмы являются приспособлениями, образующими при помощи кинематических цепей один или некоторое число замкнутых контуров, при этом входной поток механической мощности при создании передачи и трансформации подвергается расчленению на несколько потоков, которые суммируются на выходном звене.
Для снижения массы устройств его размера используется разложение передаваемых усилий относительно некоторого количества кинематических пар, что существенно снижает нагрузку на составляющие пар.
Жесткость устройства повышается в результате многозонного контакта звеньев устройства. Мертвый ход, а также кинематическую погрешность можно снизить в результате осреднения погрешностей и зазоров.
Для борьбы с избыточными или пассивными связями, полученными в результате создания в строении устройства внутренних контуров, используется увеличенная точность производства деталей, также для этого применяется повышение зазоров в кинематических парах.
Планетарный механизм – сложный зубчатый механизм, оснащенный хотя бы одним колесом, имеющим подвижную ось.
Виды стандартных планетарных устройств:
1) однорядное;
2) двухрядное, снабженное одним внешним и одним внутренним зацеплением;
3) двухрядное, оборудованное двумя внешними зацеплениями;
4) двухрядное, обеспеченное двумя внутренними зацеплениями.
Зубчатое колесо планетарного механизма, имеющее внешние зубья, установленное в центре, получило название солнечное зубчатое колесо. Зубчатые колеса, имеющие внутренние зубья, определяются как корона или эпицикл. Колеса с подвижными осями называются сателлитами, если они устанавливаются на подвижное звено, то звено называется водилом, обозначается звено водила при помощи латинской буквы h.
Рядный зубчатый механизм является сложным зубчатым механизмом, оснащенным колесами с неподвижными осями. Создается такое устройство в результате последовательного сочетания некоторого количества простых зубчатых механизмов. Передаточное отношение рядного зубчатого механизма, представляющего собой некоторое число объединенных последовательно зубчатых устройств, соответствует произведению передаточных отношений данных механизмов.
Конструкторское решение каландров различного назначения практически идентично, отличительными особенностями являются габариты, количество валков и возможное их расположение на устройстве, фрикция и скорость валков.
Каландр создан из трех валков, характеризуемых наличием независимого регулируемого привода. Валки производятся из нержавеющей легированной стали, поверхность валков полированная, валки также проходят стадию азотировки. Крайние валки обеспечиваются приспособлениями перемещения, которые направлены на контролирование и регулирование зазора, образуемого между валками. Конструкторское решение задает для каждого валка систему термостатирования, оснащенную системой охлаждения и системой нагрева.
Каландр более сложной конструкции включает в себя основание, валки с подшипниками, приспособление для подвода теплоносителя и привод. Устройство регулирования зазора оснащается дистанционным пультом управления; практически для всех валков, исключение составляет приводной валок, можно регулировать положение. Смазка подшипников определяется как централизованная. Температура периферийных каналов валков создается с помощью теплоносителя, привод задается от электродвигателя постоянного тока, проходящего сквозь редуктор, блок-редуктор, универсальные шарнирные шпиндели, которые способны раздвигать и перекрещивать валки. Для переработки резины наиболее жесткого типа применяются приводы усиленной мощности, разработанные для принятия повышенных нагрузок на валки.
Каландры валковые используются для производства обкладки и промазки тканей, корда резиновым составом, для дублирования обрезиненных тканей с листами, состоящими из резинового состава, для профилирования и листования резинового состава.
Каландирование – процесс, характеризуемый обработкой материалов, таких как бумага, резина и ткань, производимый при помощи каландра. Для бумажного производства процесс реализуется с помощью машинных каландров, которые располагаются в последней части сушильного компонента бумагоделательной машины, а также на независимых агрегатах – суперкаландрах. Бумага, обработанная с помощью суперкаландра, называется каландрированной, лощеной; если бумага была пропущена сквозь машинный каландр и обладает небольшим глянцем, то она называется бумагой машинной гладкости. Гладкость бумаги зависит от применяемых валов. Наиболее высокая гладкость достигается с помощью комплекса из чугунных и бумажных валов; высокая температура при нагревании также способствует увеличению гладкости; влажность бумаги и ее ингредиенты, каландрирование с большим успехом проходит бумага с высоким количеством каолина; на гладкость также влияет давление, образованное между валами устройства.
В резиновом производстве каландрирование используется в создании резиновых листов и пластин, обладающих толщиной разного размера, также для произведения пластификации, нагревания резиновой смеси, для промазки ткани резиновым составом. Текстильная промышленность применяет каландрирование для уплотнения льняных, хлопчатобумажных, джутовых и других видов тканей, для создания блеска и нанесения тисненых узоров.
Суперкаландр представляет собой устройство для отделки бумаги, для придания поверхности бумаги наибольшей гладкости, лоска, уплотнения, тиснения и др. Конструкция суперкаландра включает в себя от 6 до 12 валков, изготовленных из металла, чугуна, который затем шлифуется, и бумаги. В этом случае бумага подвергается прессованию на стальном сердечнике при помощи давления, достигающего 45 Мн/м2, далее вал подлежит обточке и шлифованию. Валки выполняют функцию пропускания бумажного полотна. Чтобы создать каландрирование бумаги для печати, необходимы бумажные валы с твердостью в 36—40 единиц по методу Шора.
Для отделки необходимо задать линейное давление от 100 до 350 кгс/см, бумажное полотно перемещается с максимальной скоростью в 900 м/мин. Обрыв полотна можно устранить с помощью обводных бумаговедущих валов, что позволяет уменьшить напряжение бумаги на участке каландрирования. Основным назначением суперкаландра является отделка бумагой, используемой для письма и печатания.
Канифас-блок – одношкивный блок с откидной наметкой для закладки троса. Он служит для изменения направления тяги троса при грузоподъемных итакелажных работах.
Верхний конец блока задавался достаточно длинным, по сравнению с обычным блоком, оснащался отверстием для крепления блока, на одной стороне верхний конец оставался открытым, для того чтобы пропущенный сквозь него трос можно было вставить и вынуть.
Канифас-блоки используются для проведения работ, связанных с глубоководным лотом, для проводки грота-брасов, для установки стеньги. Большие конифас-блоки оковываются железом и предназначаются для заведения каната для буксировки и верповании судна.
Название произошло от немецкого слова Kanten, что означает «переворачивать». Представляет собой механизм, который создан для переворачивания, т. е. кантовки изделий в процессе производства изделия, его транспортировки и упаковки.
Наиболее простой кантователь – цепной, получил широкое использование в кузнечном производстве для фиксирования на крюке мостового подъемного крана. Берется прямоугольная рама, на которой устанавливается электродвигатель с червячным редуктором, с учрежденной на выходном валу звездочкой, которая направлена на вовлечение в движение замкнутой цепи, при этом цепь оснащается поковкой, способной совершать поворот в результате движения цепи. Цепные кантователи рассчитаны на грузоподъемность примерно в 200 т.
Сложные кантователи получили название манипуляторов, которые подразделяются на напольные и подвесные. Подвесной манипулятор устанавливается на монорельсовую тележку, производящую перемещение вдоль рельса, которое фиксируется под верхней частью перекрытия помещения.
Напольный манипулятор является передвижным мостом, служащим для движения хобота, оснащенного клещевым захватом, в горизонтальном перемещении.
Хобот разработан таким образом, чтобы производить вращательное движение относительно своей оси и двигаться в вертикальном направлении.
Кантователи сложного типа созданы на грузоподъемность в пределах 0,75—75 т.
Разработаны кантователи на основе двух рольгангов, установленных под углом, при этом каждый рольганг способен производить повороты в горизонтальном положении; используются кантователи такого типа для перемещения листовой стали.
Кантователи типа кривошипно-шатунные поворотные головки, рычажные механизмы, поворотные каретки применяются для произведения сварки рам сложной конструкции, балок, резервуаров.
Кантователи типа сталкиватели, выдвижные упоры разработаны для произведения поворота ящиков на 90°, которые перемещаются на конвейере; используются такие кантователи на машинах, предназначенных для упаковки готовых изделий в ящики или коробки.
Кантователи широко применяются во всех отраслях производственной деятельности человека. Механизмы такого типа успешно совмещаются с вакуумными захватами, которые используются для транспортировки листовых и плоских деталей, и для деталей другого вида. Система получила широкое использование в легкой промышленности, пищевой и полиграфической промышленности.
Карданный механизм – механизм для передачи вращения между валами, которые устанавливаются под переменным углом друг к другу. Также употребимо название кардан, карданный или универсальный шарнир.
Карданная передача представляет собой устройство, состоящее из последовательного объединения двух карданных механизмов. В автомобиле карданная передача выполняет функцию передачи вращательного движения от ведущего вала к ведомому, которые устанавливаются под углом относительно друг друга. Используется для соединения коробки передач и двигателя под углом, достигающим 5°, для сочетания коробки передач с раздаточной коробкой под углом, также достигающим 5°, коробкой передач с главной передачей под углом, достигающим 15°, также применяется для соединения в рулевом приводе, при приводе лебедок.
Карданный вал-приспособление, включаемое в заднеприводной и полноприводной автомобиль, созданное для передачи крутящего момента от одного устройства к другому, при этом оси валов устройств не совпадают и могут работать в непрерывных модифицирующихся межосевых расстояниях в различных горизонтальных и вертикальных плоскостях. Например, между коробкой переключения передач, либо раздаточной коробкой и валом редуктора ведущего моста.
В состав входят карданный вал с двумя карданами, в редких случаях с одним, скользящая вилка, две крестовины, или шарниры, две фланец-вилки, уплотнения, приспособления для крепления. Для производства валов используется труба, для сплошных применяют пруток, одна сторона вала оснащается привариваемой неподвижной вилкой шарнира, вторая сторона обеспечивается шлицевой втулкой, на которую насаживается мобильная скользящая вилка с шарниром. Шлицевое соединение предназначено для трансформации рабочей длины в результате работы подвески. Карданная передача может выполняться из нескольких частей, имеющих промежуточные подвесные опоры. Используется такой вариант в связи с тем, что большая скорость вращения, благодаря распределенному относительно длины остаточного дисбаланса, приводит длинные валы к изгибанию. Четко отбалансированный по определенной скорости вал на других скоростях может создать значительную вибрацию. Шарниры представляют собой сочетание вилок, фланцев вилок, крестовины, имеющей игольчатые подшипники, крепежных приспособлений. Карданная передача создает передачу крутящего момента с пульсацией угловой скорости, поэтому для исключения эффекта такого вида вилки с двух сторон вала устанавливают в одной плоскости, и это действие производится в момент сборки карданного вала. Карданные шарниры в таком положении вносят противофазные пульсации угловой скорости, компенсируя вибрации относительно друг друга.
В случае сочетания при помощи карданного вала таких механизмов, у которых угол соединения и расстояние способны варьироваться, например главная передача и коробка передач, вводится осевая компенсация, представляющая собой скользящее шлицевое соединение, разработанное с учетом возможного модифицирования длины вала в установленных рамках. Размер угла между валами обуславливает карданную передачу, в которой используются жесткие или упругие полукарданы, полные карданы неравных угловых скоростей. Самыми распространенными считаются полные карданы, оснащенные такими главными деталями, как две вилки, крестовина, игольчатые подшипники, уплотняющие приспособления, опоры для цапф крестовин. Коэффициент полезного действия одного кардана составляет 0,985—0,99.
Карданный вал может обладать дисбалансом, признаками для установления дисбаланса являются усиленные вибрации, способные в результате различных частот вращения снижаться и увеличиваться. Если вибрации изменяются при движении на различных скоростях, то дисбаланс присутствует. Дисбаланс создает дополнительные нагрузки на шарниры и детали трансмиссии, связанные с карданной передачей, ослабляются крепления, приводя к более быстрому выходу из строя машины и к аварийным ситуациям.
На организм человека дисбаланс также влияет не лучшим образом: человек становится раздражительным, появляется быстрая утомляемость, что приводит к различным заболеваниям. Дисбаланс может возникать в результате недостаточной точности при производстве отдельных частей карданной передачи; при изготовлении из неоднородного материала с различными плотностями; при неточном общем центрировании взаимозависимых деталей; в случае появления зазоров при соединении деталей и агрегатов, а также при смещении осей в результате установки; при деформации валов в результате термического и механического воздействия и при получении повреждений в период эксплуатации.
Уровень дисбаланса карданных валов зависит от динамической балансировки, осуществляемой при помощи специальных стендов.
Для устранения дисбаланса используются балансировочные пластины, фиксируемые на трубе, балансировочные прокладки, устанавливаемые под стопорные крышки подшипников крестовины, также применяется удаление металла со специальных бобышек, находящихся на вилках фланцев. Балансировка осуществляется, главным образом, при сборе с шарнирами. Дисбаланс зависит от зазоров, полученных при составлении шлицевого соединения и крестовины.
Для устранения вибрации некоторые производители автомобилей внедряют эластичные винты, демпферные резинометаллические муфты и подвесные опоры, что позволяет увеличить срок службы карданов.
Если вращение обеспечивается в результате подвижного объединения звеньев, то это жесткий карданный механизм, если же в результате упругих характеристик специальных элементов – упругий карданный механизм.
Механизм получил название в честь Дж. Кардано, который разработал подвес для сохранения постоянного положения тела, опора которого совершает различные повороты.
Простой жесткий карданный механизм – шарнир Гука, оси вращения I, II, III, IV этого шарнира пересекаются под углом – в неподвижной точке О центра сферы с радиусом ОВ = ОВ' = ОС = ОС'. В случае, если угол пересечения находится в пределах от 0 до 90°, шарниры В, В', С, С' попарно очерчивают окружность равносильного радиуса в плоскостях, которые перпендикулярны осям I и II, что позволяет создавать передачу вращения с переменным углом α. Механизм такого типа характеризуется неравномерностью скорости вращения ведомого вала, в результате постоянной скорости ведущего вала. Скорость ведомого вала увеличивается с повышением угла α в том случае когда он равняется 90°, передача вращения при помощи карданного механизма делается невозможной.
Двойной карданный механизм используется для необходимости создания равномерного вращения ведомого вала, при этом углы перемещения равны, вилки на валу размещены в одной плоскости. Жесткий карданный механизм может соответствовать углу наклона валов, максимально достигающих 38°.
Упругий карданный механизм используется для угла наклона валов в 3—5°, при этом гибкие компоненты изготавливаются из крепкого эластичного вещества.
В случае, когда двойной карданный механизм неприменим, применяется кардан, разработанный на делении угла между валами с помощью биссекторной плоскости.
Карданный механизм получил широкое распространение в разнообразных устройствах, например в летательных аппаратах, в станках, в автомобилях, сельскохозяйственных машинах, т. е. в том случае, когда работа основана на необходимом перемещении взаимного месторасположения валов, направленных на передачу вращательного движения.