bannerbannerbanner
полная версияКраткий курс «Общей семиотики»

Абрам Бенцианович Соломоник
Краткий курс «Общей семиотики»

Полная версия

Четвертым классом слов-знаков являются термины. Термины появляются в частных семиотиках, касающихся специальных областей знания. Там они собираются в так называемых терминологических словарях, имеющих огромное значение для специалистов данного профиля. Термины в своей сфере применения играют ту же роль, что и слова, предназначенные для всех. Они также могут быть разбиты на три упомянутые выше категории − имена собственные, понятия и концепты, но только в рамках своей области применения. Так, в музыкальной терминологии мы находим имена, понятия и концепты, необходимые для обсуждения музыкальных проблем; то же происходит в медицинской терминологии и в любой иной области человеческой активности.

Некоторые дополнительные свойства знаков
Аллегорические знаки и знаки-символы

«Аллегория − иносказательное изображение отвлеченного понятия при помощи конкретного явления действительности, признаки которого помогают ярче представить это понятие, его основные черты. <…> Во многих аллегорических образах отразилось понимание человеком добра, зла, справедливости и других нравственных ценностей. Так, традиционно, еще со времен Древней Греции, правосудие иносказательно представлено в виде богини Фемиды в образе женщины с завязанными глазами и весами в руках.

Аллегория надежды − это якорь;

аллегория свободы − разорванные цепи;

белый голубь − аллегория мира во всем мире».8

Некоторые знаковые системы почти целиком базируются на аллегориях; например, классическая скульптура, а среди литературных жанров − басня. Аллегорические знаки требуют для расшифровки предварительного знания особого наполнения знака. Они иногда сопровождаются словесными пояснениями, как это делается, скажем, в Летнем Саду в Петербурге, где на аллеях выставлены исключительно аллегорические скульптуры, замысел которых поясняется на табличках, прикрепленных к постаментам скульптур. Таким способом смысл, заложенный в скульптурах, который может остаться неясным для посетителей, проясняется, и знаки выполняют свое назначение.

Знаки-символы имеют другое наполнение: вдобавок к обычному знаковому антуражу как отражению чего-то, символ апеллирует не только к разуму, но и к человеческим эмоциям. Призыв к эмоциям может быть сдержанным, как в знаке V (лат. Victoria − победа), а может быть очень мощным, как в картине Пабло Пикассо «Герника».9 Картина была написана по следам массированной бомбардировки испанского городка Герника, разрушенного по приказу генерала Франко, а многие его жители погибли. Воздействие полотна было потрясающим, как и рассчитывал художник, и в этом сказался ее символизм; кисть художника как бы расчленяла живые тела на составные части. Это полотно, насыщенное знаками-символами, оказалось удачным олицетворением войны в наступающем атомном столетии.

Знаки-аллегории отличаются от символических знаков способом обращения к нашим эмоциям. В аллегориях превалирует нравоучение, менторское наставление, как, например, в басне И.А. Крылова «Ворона и лисица»:

«Уж сколько раз твердили миру,

Что лесть гнусна, вредна; но только всё не впрок,

И в сердце льстец всегда отыщет уголок».

В знаках-символах эмоции могут перехлестывать через край, как в сцене дебоша Маргариты из романа Михаила Булгакова «Мастер и Маргарита». Направляясь на бал к Сатане, где ей отводилась роль королевы, принимающей самых гнусных преступников, она учиняет погром в квартире критика Латунского, преследовавшего Мастера. Оказывается, Сила Зла может творить и справедливость, что символически демонстрируется Маргаритой.

Как раз сейчас, когда я пишу эти строки, происходит одно из самых драматических мировых событий сегодняшнего дня, имеющее большое символическое значение для всего человечества. Спикер палаты представителей конгресса США Нэнси Пелоси посетила Тайвань, несмотря на угрозы со стороны китайского правительства. Мир застыл, ожидая реакции КНР. Казалось бы, что такого важного в приезде Пелоси на Тайвань? Однако мир еще помнит Первую мировую войну (28.06.1914 − 11.11.1918), которая разразилась по столь же незначительному поводу. После ожесточенных боев, в которых погибло около 9 млн. человек (и более 5 млн. мирных жителей в результате военной оккупации, бомбардировок, голода и болезней), эта война кардинально изменила ход мировой истории. Визит Пелоси можно определить, как символическое событие, реально измеряющее соотношение сил Добра и Зла на планете на данный момент времени.

Знаки-синонимы, знаки-антонимы и знаки-омонимы

Как и слова в языке, знаки в иных, неязыковых системах могут выражать отношения синонимов, антонимов и омонимов.

Знаки-синонимы выражают одинаковый смысл, хотя знаковое обозначение у них самое разнообразное. Они могут появляться в одной и в разных системах. Так, левая и правая части математических равенств, соединенных знаком =, всегда синонимичны; и на этом построены все алгоритмы алгебраических систем. Выражения «Утренняя звезда», «Вечерняя звезда» и «Венера» синонимичны, так как обозначают одно и то же небесное тело. Синонимия является главным средством переноса значений из одной системы в другую. Представим себе ситуацию, когда кто-нибудь на улице спрашивает, где расположен дом под номером 17. Вы знакомы с местностью и, если дом находится в пределах видимости, вы просто жестом показываете на него. Если дом находится в отдалении, вы можете словесно объяснить, как его найти. Если в руках у спрашивающего карта, вы можете показать местонахождение дома на карте. Во всех этих случаях используются синонимические знаки, обозначающие одно и то же.

Знаки-синонимы противостоят знакам-антонимам, которые обозначают противоположные по значению вещи-события. Находясь на приеме у стоматолога, вы объясняете ему, какой зуб у вас болит, используя такие выражения, как «левая верхняя» или «нижняя правая» части челюсти. Знаки-омонимы одинаковы по форме, но не совпадают по содержанию. Например, значок [ < ] в математических построениях означает «больше», а в языковых текстах <…> используется для пропуска некоторой части в цитате, которая после этого значка может быть продолжена. Следует иметь в виду, что языковые системы знаков в любом языке построены таким образом, чтобы дублировать и объяснять название любого значка в любой иной знаковой системе. Язык служит нам как всеобъемлющая система знаков, включающая название и разъяснение смысла любых знаков также и в неязыковых системах. Он является нашим толмачом в любых семиотических и мыслительных (виртуальных) операциях, о чем я буду говорить ниже. В этом и состоит его особенность как особой знаковой системы в семиотике.

Основной знак и его диакритики

Как и в предыдущем разделе, это качество знаков было впервые сформулировано в лингвистике и практически использовано в алфавитах, где некоторые буквы принимали дополнения к своей обычной форме. В русском алфавите тоже есть буквы с диакритическими добавками. Такими буквами являются буквы «е» и «ш». После добавления двух точек над «е» появляется новая буква − «ё», вставленная в алфавит и имеющая свое произношение. Буква «щ» может толковаться как «ш» с диакритической добавкой хвостика. Она также произносится иначе, чем исходное «ш».

Во многих иностранных языках буквы с диакритиками встречаются чаще, чем в русском алфавите. Скажем, во французском языке различаются пять разных групп диакритиков, которые, будучи прибавленными к основным буквам, влияют на их произношение. Это обстоятельство является отрицательной чертой алфавита; желательно, чтобы каждая буква в нем имела только одно звучание и чтобы оно не повторялось при чтении иных букв. В этом плане одним из лучших признан современный исландский алфавит.

Между тем, диактритики могут быть выделены и в приложениях к неязыковым системам знаков. Диакритики обильно используются в нотной грамоте, где нота может быть буквально обвешана дополнительными значками. Нота изображается на нотном стане из пяти параллельных строк, а рядом, цветом внутри, прибавляемыми к хвостику линиями и лигатурами для связок с другими нотами изображаются ее конечное звучание, его продолжительность, регистр и другие компоненты ее окончательного звучания.

В картографии кружками на физических картах изображаются различные поселения: города, поселки, деревни. А внутри иногда пишутся цифры, означающие количество их жителей. Это тоже диакритики для базисного знака карты. Их много и для других канонизированных знаков на физических картах.

Когда-то нас в школе учили красиво писать от руки. Я помню тетради в косую линейку, с ними мы тренировались, вставляя в каждую клетку одну красиво нарисованную букву с обязательными связками между соседними буквами. Все это писалось, не отрывая пера от начала слова до конца. Такие лигатуры были своего рода диакритиками для начертания букв на письме.

Различные конструкции знаков
Простой знак в его исходной форме

Простой знак в исходной форме появляется еще до его конкретного употребления в том или ином контексте. Это как бы заготовка для знаков, лежащих на складе до того времени, когда они потребуются в деле. В этой своей ипостаси знак наделяется всеми своими гипотетически важными свойствами, которые, однако, остаются пока лишь потенциально доступными для их конкретного воплощения. Когда приходит время его реализации, знак проявляет свои свойства в той комбинации, которая требуется в данном конкретном случае. Фактически может быть задействована лишь часть присущих знаку возможностей, в то время как остальные остаются нереализованными. С другой стороны, от знака в момент его использования могут потребоваться иные, ранее не предусмотренные качества. Он наделяется ими ad hoc, но опять-таки из заранее предусмотренных источников.

 

Возьмем в качестве примера картографические значки, ну, хотя бы значки для изображения водных пространств. Водные пространства на Земле занимают по сравнению с сушей гораздо большую территорию, а виды водных пространств настолько разнообразны, что для каждого из их изображений разработаны свои правила. Сосредоточимся на внутриконтинентальных водных ресурсах в самом простом их изображении для школьников. Карты водных пространств называются гидрографией.

«Все гидрографические знаки обозначаются голубым цветом и помогают охарактеризовать местность на карте. По обозначениям можно определить, насколько данная территория увлажнена, имеются ли достаточные водные ресурсы, подвержена или не подвержена местность затоплению в определенные сезоны. Наиболее распространенными знаками являются: “родник”, “река”, “ручей”, “болото”, “колодец”, “водопровод”. К гидрографическим обозначениям также относятся и следующие знаки: “плотина”, “пристань”, “причал”, “рифы”, “маяк”, “светящийся буй”.

Ширину и глубину рек и каналов в метрах подписывают в виде дроби: в числителе − ширина, в знаменателе − глубина и характер грунта дна. Такие подписи помещаются в нескольких местах на протяжении реки (или канала).

Скорость течения рек (м/с), изображаемых двумя линиями, указывают в середине стрелки, показывающей направление течения. На реках и озерах подписывают также высоту уровня воды в межень (период низкого уровня воды) по отношению к уровню моря (отметки урезов воды). На реках и каналах показывают плотинышлюзыпаромы (перевозы), броды и приводят их характеристики.

Колодцы обозначают кружками синего цвета, рядом с которыми помещается буква К или подпись артк. (артезианский колодец).

Наземные водопроводы показывают сплошными линиями синего цвета с точками (через каждые 8 мм), а подземные − синим пунктиром.

Чтобы легче отыскать и выбрать по карте источники водоснабжения в степных и пустынных районах, главные колодцы выделяют более крупным условным знаком. Кроме того, при наличии данных слева от условного знака колодца дается пояснительная подпись отметки уровня земли, справа − глубина колодца в метрах и скорость наполнения в литрах за час.10

Простые исходные знаки собираются для каждой отрасли знаний или жизненной практики в специальных списках (я называю их номенклатурами). Например, слова языка в их исходной форме помещаются в толковых словарях. Там они располагаются по алфавиту, независимо от их содержания, и снабжаются комментариями, которые обычно включают значение, а иногда и несколько значений, если они еще не превратились в разные слова. Иногда указываются их главные языковые характеристики, как-то, принадлежность к той или иной части речи. Обязательно прилагаются примеры на их применение, чтобы не оставлять сомнений в их реальных смыслах. Номенклатурой является таблица химических элементов Менделеева, список семи нот с бемолями и диезами, список учащихся в классе или спортсменов, участвующих в состязании, опись предметов, предназначенных для конфискации по решению суда и прочие такие записи.

В картографии списки используемых знаков подробно перечисляются в учебных пособиях, как я показал это выше. Но, кроме этого, к каждой отдельной карте прилагается так называемая легенда, в которой перечисляются все использованные в карте знаки и их значения. Значение денежных знаков познается на практике использования тех купюр и монет, которые носят с собой для текущих нужд. Любой способ познания значения знаков хорош для освоения их правильного применения в повседневной жизни.

Простые знаки и их изменение в ходе применения

Я писал выше о диакритиках, но диакритики создают фактически иной вариант исходного знака. В этом разделе речь пойдет о производных, создающих иную форму исходного знака с несколько измененным, но все же узнаваемым прежним значением. Когда знак переносится из номенклатуры в реальный контекст, он варьирует свое прежнее значение, приспосабливаясь к условиям контекста. Для этого существует грамматика той сферы деятельности, в рамках которой появляется данный знак. Начнем с языковых знаков, для которых давным-давно появились грамматики, чтобы установить правила поведения слов (базисных знаков языковых систем) в том или ином их обличии.

Будучи включенными в устную или письменную речь, слова принимают на себя определенные синтаксические и морфологические функции. Теперь слово не просто одна из единиц данного языка, каковой оно предстает в толковом словаре; теперь это представитель какой-либо части речи, а также какой-то член предложения − подлежащее, сказуемое и т.д. В зависимости от своих синтаксических регалий данное слово изменяется по морфологическим параметрам, предназначенным для этих категорий в грамматике данного языка. Тот же самый «стол» оказывается существительным мужского рода в единственном или множественном числе, первого типа склонения, предусматривающего его 12 словоформ (в 6 падежах единственного и в 6 падежах множественного числа). Оно имеет право присоединять к себе определения, командовать сказуемым, разнообразить свое значение с помощью второстепенных членов предложения.

То же самое касается и иных знаковых систем. Вот реакция, в которой метан (CH4) взаимодействует c кислородом (О); она записывается так:

СН4 + 2О2 → СО2 + 2Н2О (одна молекула метана + две молекулы воды превращаются в одну молекулу углекислого газа + две молекулы воды). В ходе реакции атом углерода из состава метана перешел в состав углекислого газа, атом водорода − в состав воды, а атомы кислорода распределились между молекулами углекислого газа и воды. Все это записывается в виде трансформации используемых знаков с элементарной сменой коэффициентов и цифр валентностей задействованных веществ. Я мог бы привести массу иных примеров, но и этих, по-моему, вполне достаточно, чтобы понять, как изменяются записи исходных знаков в ходе их трансформаций в различных знаковых системах. Правила таких изменений я называю правилами грамматики (синтаксиса и морфологии) знаковой системы.

Переменные и промежуточные знаки

В этом разделе я коснусь двух типов знаков, которые появляются для решения семиотических проблем, а потом исчезают. Правда, они появляются и исчезают по разным причинам. Начнем с переменных знаков.

Они наиболее абстрактны из всех категорий знаков и наиболее распространены в алгебре, логике и программировании. Остановимся на алгебре. Эта часть математики появилась весьма поздно, вслед за арифметикой, геометрией и тригонометрией. Объясняется это обстоятельство тем, что алгебра самая абстрактная из них. Она приняла на себя задачу коренным образом изменить математический подход к тем примитивным действиям, которые решались очень медленно с помощью предшествовавших ей отраслей математики, а то и не решались вовсе. «…Алгебра − общий метод, дающий способы решения арифметических задач вне зависимости от их эмпирического содержания и исходных числовых данных».11

Алгебра решила многие проблемы счета, включив в арсенал задействованных ею знаков переменные величины, которые шифровали неизвестные величины: допустим, вместо цифр − 2 километра, 30 гектаров, 50 человек и т.д. появляются х километров, у гектаров, z людей и т.п. Используя переменные величины, алгебра как бы говорит: я поработаю с ними своими методами, чтобы свести потом эти неизвестные на нет и заменить их величинами, которые можно обозначить сначала цифрами, а потом и конкретными именами. Сначала в линейных уравнениях с одним неизвестным школьники 7-го класса сводят такие уравнения к арифметическим построениям, легко решаемым по предлагаемым заранее алгоритмам, а потом алгоритмы усложняются, но задача остается постоянной − избавиться от переменных, пользуясь тем или иным способом. Вначале мы получаем числовой результат, который прилагается потом к реальным предметам, называемым уже словами.

Не только алгебра прибегает к переменным знакам для решения стоящих перед нами задач. Мы это постоянно делаем для разрешения самых разнообразных бытовых проблем. Например, когда в наш цифровой век мне предлагают придумать какой-либо код (а это встречается все чаще и чаще), то я выбираю такой код, который могу легко запомнить: для цифр я беру год своего рождения либо год рождения кого-либо из моих родных, а для букв − хорошо знакомое мне имя. Это сильно облегчает запоминание абсолютно абстрактного для других набора цифр и букв. Но это − типичное использование переменных знаков.

Особое место переменные знаки занимают в создании программ для электронных гаджетов: «Переменные − важнейшая часть любого языка программирования, позволяющая хранить, использовать (обрабатывать/определять) и передавать данные. Следовательно, именно переменные являются тем звеном, которое является ключевым… для максимально эффективного и безопасного решения различных задач. <…> Стоит отметить, что переменные в программировании отличаются от математических переменных, также используемых в разных областях техники и естественных наук. Так, например, в задаче найти произведение Z двух натуральных чисел X и Y с помощью вычислительной машины, умеющей выполнять только сложение, необходимо написать программу, обусловливающую данное решение.

Поскольку программа должна быть универсальна: вычислять произведения для любой пары натуральных чисел, − то вместо чисел в ней употребляются имена, обозначающие изменяемые объекты, которые и называются переменными. Нам приходится присваивать определенные имена/значения переменным, либо описать, что такое произведение, а также решать вопрос с натуральными числами. Именно этим (условно) многообразием проблем и определяется многообразие языков и методов решения работы с переменными».12

Если переменные знаки позволяют нам обходить проблемы, с которыми не могут совладать обычные знаки, то промежуточные знаки предоставляют нам возможность избавиться от обилия знаков, часть из которых оказывается необязательной. Возьмем для примера циферблат часов, представляющий собой небольшую знаковую систему определения точного времени на какой-то данный момент.

На циферблате обычно отображаются 12 часов, то есть, половина суток. На крупных часах (башенных, напольных или настенных) можно легко разместить все знаки системы: цифровое изображение часов и промежуточные черточки для изображения получаса − длинная черточка и более короткие − для каждых пяти минут. Такое изображение времени вполне удовлетворительно для обычных бытовых ситуаций. Когда мы переходим на карманные или наручные часы, то подробное исчисление времени на циферблате делается затруднительным. Тогда мы попросту избавляемся от цифр для нумерации часов, а иногда и от промежуточных черточек, которые показывают минуты. Для человека, привыкшего к часам, такая профанация знаков оказывается несущественной.

 

Избавление от чрезмерного количества знаков практикуется во многих случаях и обозначается иногда специальными значками. Что такое многоточие на письме? Это − пунктуационный знак, который показывает, что мы в данном месте могли бы продолжить нашу мысль, но считаем это ненужным. Поэтому мы отделываемся многоточием, оставляя поиск дополнительных доводов на долю самих читателей. В эс-эм-эсках мы зачастую заменяем множество слов, выражающих наши эмоции, каким-либо одним эмотиконом; а если мы переполнены эмоциями, то и несколькими эмодзи подряд. Таким образом мы экономим массу слов, заменяя их одним либо несколькими образными значками.

Знаки простые, сложные, смешанные и их сращения

По композиции знаки могут быть разделены на указанные в заголовке четыре категории. Определим каждую из них в нескольких словах.

Простые знаки в своей исходной форме демонстрируются в номенклатурах. Простые знаки могут получать морфологические добавки, но при этом они остаются простыми. Так, слово «лес» может быть представлено в многочисленных падежных словоформах («от леса», «в лесу», «за лесом»), оставаясь при этом простым знаком. Улыбка как знак может оказаться дружественной, кислой, горькой или вымученной, но в любом случае она по форме воспринимается как гримаса на лице и как простой знак какой-то эмоции.

Знак перестает быть простым, когда он перерастает рамки данного ему первичного определения. Он остается простым знаком, прибавляя всевозможные морфологические добавки, пока не наступает критическая точка; тогда знак с добавками превращается в сложный составной знак. В химии простые знаки ограничиваются набором номенклатурных знаков атомов в таблице Менделеева; а в знаках молекул соединяются два или три простых знака в сложный: Н2О (молекула воды), NaCl (молекула поваренной соли). В упомянутых молекулах знаки атомов объединяются в сложный знак с учетом их валентности. Части сложных знаков соединяются в сложный не просто путем простой агрегации, но по особым правилам системы, которую они же составляют. Так, например, сложные слова в русском языке соединяются с помощью буквы [о]: главн[о]командующий, кос[о]глазый. В других языках тоже существуют специальные правила объединения нескольких слов в единое неразделяемое целое. Поговорим об этом в следующей главе в разделе «Наделение значениями».

Особым типом сложных знаков являются смешанные знаки, в которых соединяются не разноплановые знаки, а знаки одной и той же категории, но разного веса (см. главу о знаковых системах). Так, в определении времени обычно участвуют знаки часов и примыкающие к ним знаки минут: 9.45 (9 часов и сорок пять минут). Мировой рекорд в беге на сто метров принадлежит бегуну из Ямайки Усэйну Болту и равен 9.58 сек., то есть девяти и пятидесяти восьми сотым секунды. Заметьте, что в этом случае смешиваются знаки двух разных систем − замер времени, основанный на 60-мерном основании (час, минута, секунда) и замер пространства со 100-мерным основанием (сантиметр, метр, километр). Замеры сегодняшнего дня настолько сложны, что приходится обращаться к смешению знаков из разных систем.

В рангах войсковых (не корабельных) воинских званий в российской армии имеются ступеньки, снабженные дополнительными характеристиками по отношению к основному знаку. Вот их перечень в современной русской армии по параметру возрастания рангов и с перечислением только таксономических групп: солдаты, сержанты, старшины, прапорщики и офицеры. Группа офицеров распределяется на подгруппы следующим образом: младший лейтенант, лейтенант, старший лейтенант, капитан, майор, подполковник, полковник, генерал-майор, генерал-лейтенант, генерал-полковник, генерал армии, маршал Российской федерации. В подгруппах лейтенантов, полковников и генералов имеются подразделения, обозначенные смешанными знаками и с участием номенклатурной компоненты. Я их выделил курсивом.


Наконец, последнюю группу сложных знаков, которую я выделяю, можно смело назвать

идиоматическими знаками

или

знаками-сращениями.

Они отличаются тем, что связанные между собой части этих знаков практически нераздельны и составляют компактное единое целое. Все мы знакомы с языковыми идиомами, такими, как «Его услали, куда Макар телят не гонял», то есть, на край света, «в места не столь отдаленные» (!). Никто не знает, кем был Макар, и куда он гонял своих телят, но общий смысл идиомы ясен и обладает большой эмоциональной силой. Идиоматические знаки встречаются не только в языковых системах. Скажем, в дорожном знаке, повелевающем остановиться, «дальше ехать нельзя», все его элементы работают совместно: форма, цвет и надпись. Всё вместе содержит абсолютное запрещение на продолжение езды в том направлении, на которое указывает знак.

Сращение, использованное Солженицыным в названии его книги «Архипелаг ГУЛАГ», произошло от официального наименования отдела Министерства внутренних дел и расшифровывается как «Главное управление лагерей», разумеется, концентрационных. Оно давно уже отошло от своего первоначального смысла и понимается просто как система устрашения жителей Советского Союза. Выражение «Это − невидимая часть Луны» означает что-то непонятное, находящееся от нас в недоступном противостоянии. Луна повернута к нам лишь одной стороной, которая видна в телескоп и понятна, а вторая половина Луны скрыта и невнятна. Музыкальный аккорд я бы тоже отнес к сращениям звуков, сливающихся в единое гармоничное целое. Все это сращения знаков, нераздельные на части по своей конструкции.

Может ли “ноль” быть знаком “ничего” вместо пустого места?

Еще как может, не хуже знаков, сопровождаемых положительными или отрицательными зарядами. Дело в том, что пустое место означает “пустоту” вообще, в противовес чему-то заполненному, а “ноль” (“нуль”) означает, что на данном месте не стоит знак из данной конкретной знаковой системы, хотя по правилам системы это место должно быть как-то обозначено. На помощь приходит ноль, оставляя пустым местам положенную для них территорию.

При этом ноль приобретает много значений. Во-первых, ноль обозначает отсутствие знака на той или иной позиции, где обязательно должен стоять какой-то знак. В позиционной арифметике, там, где не появляется ни один из девяти численных знаков (1 − 9), ставится ноль, объявляющий, что в этом месте численных знаков нет. Сегодня присутствие нуля в расчетах никого не удивляет, но, когда рождалась и распространялась позиционная система исчислений, его присутствие многим казалось странным, а некоторым − недопустимым. Скажем, на Руси до заимствования позиционной системы счисления пользовались гематрией, когда вместо цифр ставили буквы алфавита, каждая из которых наделялась своим числовым значением. В ней отсутствие числового знака показывалось пустым местом, где не стояла ни одна из букв. Это было страшно неудобно, особенно в конце числа, да и сам счет с помощью гематрии был лишь паллиативом, который использовался до появления более эффективной системы. Таковой оказалась индо-арабская позиционная система.

Во-вторых, ноль (обычно в заглавной его интерпретации) используется как знак, от которого исходит целая когорта аналогичных по значению знаков, помещенных рядом с нулем. Так, на линии натуральных чисел в каком-то месте ставится О. Тогда справа от него размещаются цифры со знаком плюс, а слева со знаком минус. Первые идут по их возрастанию вправо, а левые цифры от меньших к большим движутся влево. На практике ноль даже не упоминается, но предполагается. Так, Ньютон жил в промежутке от 1643 г. до 1727 г.; по расположению дат можно не сомневаться, что происходило это в новое время (н. э.). Сократ − в промежутке с 399 г. до 449 г., то есть, до рождества Христова.

В системах координат от ноля (О) расходятся оси, которые делят пространство на различные плоскости. Появляются многочисленные системы координат, где начальная точка обозначается нулем, отходящие от нее оси буквами x, y, z, то есть так, как обычно обозначаются неизвестные. Эти оси дают нам возможность выяснить конкретные расстояния до точки или целой фигуры (т. е. ее месторасположение в пределах координатной сетки). Для этого существуют разные алгоритмы. На плоскости, пользуясь двумя осями в декартовой системе координат, мы определяем местонахождение любой точки по абсциссе и ординате. В пространстве мы определяем уже три неизвестных расстояния точки от трех плоскостей, которые создаются расходящимися от О осями. Иначе говоря, за значком О надежно закрепилось значение «начальной точки образования некоторых систем».

В языках слово «ноль» имеет значения «ничего», «пустое место», «пустота» вообще: «Он просто ноль»; «У меня ноль денег»; «Это − ноль без палочки». Наконец, мы можем использовать ноль как определенный знак чего-то по антонимичности понятий «да» ↔ «нет»: «Если ты в моем окне не увидишь цветов, не входи, − мама дома, Увидишь − звони или стучи».


8В: https://russkiiyazyk.ru/leksika/allegoriya-chto-eto-primeryi.html
9Картина в настоящее время выставлена в Музее королевы Софии в Мадриде (Испания).
  Топография, условные знаки и обозначения. В:   https://hungry-bags.ru/tysyacha/topografiya-uslovnye-znaki-i-oboznacheniya-topograficheskie-znaki-dlya/   Раздел: Реки, озера, каналы и прочее.
11Попов Валентин. Реальная логика понятий. Литрес, 2019.
12Евкова А. Понятие переменной в программировании. В: https://www.evkova.org/kursovye-raboty/ponyatie-peremennoj-v-programmirovanii-vidyi-i-tipyi-peremennyih–
Рейтинг@Mail.ru