bannerbannerbanner
полная версияМетодики энергетического расчета канала дальней тропосферной радиосвязи

Владимир Иванович Шлома
Методики энергетического расчета канала дальней тропосферной радиосвязи

Полная версия

K=L0/(L-Lпост),                  (2.62)

если энергетический запас трассы δ(дБ)<3дБ, величину К уменьшить в 2 раза для повышения точности вычислений.



(2.63)

где λ – длина волны в см.

Расчет проводится методом последовательного приближения. В разработанной программе рассчитанное значение Rпред на следующем цикле автоматически вводится в программу как заданная дальность связи и расчет повторяется до тех пор пока энергетический запас трассы не будет в пределах 1< δ(дБ)<0,5. Полученное при этом условии Rпред и считается предельной дальностью связи.

3.      

Расчет по методике, изложенной в рекомендациях МСЭ-R P.617.

По данной методике определяются потери для худших условий при заданной дальности связи и распространении за счет рассеяния на неоднородностях тропосферы [2].

По эмпирическим формулам определяются среднегодовые медианные потери, не превышаемые в течение более чем q% времени, больших 50%.


3.1      Из рис. 17 находим климатическую зону, в которой работает линия связи. Вся территория России входит в 5-ю зону.




Рис. 17. Классификация климатических зон

3.2      Для выбранной климатической зоны из таблицы 5 находим метеорологический параметр и параметры структуры атмосферы, М и γ, а также номер уравнения, которое нужно использовать при расчетах.

Для пятой зоны М=29,73 дБ, γ=0,27 км-1, уравнение (3.8).


Таблица 5 – Значения метеорологических параметров и параметров структуры атмосферы




3.3      Вычисляем угол рассеяния по формуле:

θ(мрад)=θeперпр,                  (3.1)

где θпер(мрад) и θпр(мрад) − углы горизонта со стороны передатчика и приемника, соответственно, а

θe(мрад) = R×103/(k×Rз) мрад=0,012×R,            (3.2)

где: R – длина трассы (км);

Rз – радиус Земли, равный 6370 км;

k – коэффициент эквивалентного радиуса Земли. Для средних условий рефракции (следует использовать значение k = 4/3, если нет более точных данных).

Примечание: Поскольку в исходных данных θпер и θпр заданы в градусах, потребуется их пересчет в мрад.




(3.3)

3.4      Определяем потери передачи LN, в зависимости от высоты общего объема по формуле:

LN(дБ) = 20×lg(5 + γ H) + 4,34×γ×h,      (3.4)

где

H(км) = 10–3×θ×R/4;                  (3.5)

h(км) = 10–6×θ2×k× Rз /8;            (3.6)

γ − параметр структуры атмосферы, определенный в пункте 3.2.

3.5      Определяем параметр ds – эквивалентное расстояние (используется в некоторых формулах для вычисления Y(90)

ds(км) = θ×k×Rз/1000=8,4933×θ,            (3.7)

где k=4/3 – коэффициент эквивалентного радиуса Земли.

3.6      Вычисляем коэффициент преобразования Y(90) (дБ) для времени q=90% по формуле:

Y(90) = -2,2-[8,1-2,3×10-4×min(1000×f, 4000)]×exp(-0,137×h)            (3.8)

Y(90) = -9,5-3×exp(-0,137×h)                                          (3.9)

Y(90) = -8,2                   ds < 100                              (3.10а)

Y(90) = 1,006×10-8×ds3 -2,569×10-5×ds2+0,02242×ds -10,2 100≤ ds<1000(3.10б)

Y(90) = -3,4                  в иных случаях                              (3.10в)

Y(90) = -10,845            ds<100                                          (3.11а)

Y(90) = -4,5×10-7×ds3+4,45×10-4×ds2-0,122×ds-2,645      100≤ ds<550      (3.11б)

Y(90) = -8,4                  в иных случаях                              (3.11в)

Y(90) = -11,5                  ds<100                                    (3.12а)

Y(90) = -8,519×10-8×ds3+7,444×10-5×ds2+4,18×10-4×ds-12,1      100≤ ds<465(3.12б)

Y(90) = -4,0                  в иных случаях                              (3.12в)

3.7      По таблице 6 определяем коэффициент C(q) для искомого процента времени не превышения q.

Таблица 6 Зависимость C(q) от q




Эти табличные данные могут быть представлены кривой, изображенной на рис. 18.




Рис. 18. Аппроксимация данных таблицы 6

Кривая, изображенная на рис. 18 может быть аппроксимирована следующей формулой:



(3.13)

с коэффициентами:

a1=1.473e14                  a2=-0.2272                  a3=9.047


b1=108.8                  b2=95.58                  b3=153.3


c1=1.534                        c2=7.786                  c3=44.08.

3.8      Определяем коэффициент преобразования, Y(q) (потери от замираний), для процента времени не превышения q, отличного от 50%, по формуле:

Y(q)=C(q)×Y(90) дБ.                  (3.14)

3.9      Определяем потери между антеннами и средой распространения, La:

La=0,07×exp[0,055×(Gпер+Gпр)] дБ,            (3.15)

где Gпер и Gпр − коэффициенты усиления антенн.

3.10      Определяем среднегодовые потери передачи, не превышаемые для процента времени q% по формуле:

L(q)=M+30×lg(fр)+10×lg(R)+30×lg(θ)+LN+La-Gпер-Gпрперпр-Y(q).      (3.16)

3.11      Определяем медианные потери в наихудший зимний месяц для процента времени q%.

3.11.1      Определяем эквивалентное расстояние по формуле:

dq(км)=R+8,5×(θпер(мрад)+θпр(мрад)).            (3.17)

3.11.2      По графикам рис.19 определяем разность потерь между среднегодовыми распределениями и распределениями для среднего наихудшего месяца ΔL.



Рис. 19. Кривые разности между основными потерями передачи для наихудшего месяца и годовыми основными потерями передачи


Кривые, показанные на рис. 19 можно аппроксимировать формулой:

ΔL(дБ)=p1×dq2+p2×dq+p3,            (3.18)

где p1, р2, р3 – коэффициенты аппроксимации, зависящие от q, приведены в таблице 7 для применяемых на практике значений q.


Таблица 7. Коэффициенты аппроксимации




3.11.3      Определяем медианные потери за средний наихудший зимний месяц по формуле:

Lм(мес)=L(q)+ΔL (дБ).            (3.19)

3.12      При переходе к суточной надежности воспользуемся формулами (2.35) и (2.38) из первой методики. Определяем средние медианные потери за сутки:

Lм(сут) = Lм(мес)+Δδ (мес).            (3.20)



(3.21)

3.13      Общее затухание на линии будет определяться по формуле:

L=Lм+Lбз (дБ),                  (3.22)

где Lм – соответствующее значение L(q), Lм(мес) или Lм(сут), в зависимости от заданного периода оценки надежности;

Lбз – потери от быстрых (релеевских) замираний, определяемые в п.2.2.1.1.1.

3.14      Определяем мощность сигнала на входе приемника:

Рвх(дБ) = Рпер(дБ)-L(дБ).            (3.23)

3.15      Переводим полученное значение Рвх(дБ) в Рвх(Вт)

Рвх(Вт)=10Рвх(дБ)/10

и находим отношение сигнал/шум на входе приемника:

h02= Рвх(Вт)/ Рш.пр.            (3.24)

Поскольку все каскады приемника от входных цепей до детектора являются линейными, при непосредственной модуляции несущей это же отношение сигнал/шум будет и на входе детектора, поэтому по нему можно определять вероятность битовой ошибки.

При передаче битовой информации по одному из телефонных каналов связи, входным сигналом для детектора является выходной сигнал телефонного канала, поэтому отношение сигнал/шум на входе детектора будет таким же, как на выходе телефонного канала:

h02=1мВт/Рш.т,                  (3.25)

где Рш.т – мощность шума на выходе телефонного канала, определяемая по формуле (2.50).

Расчеты h02, проводимые на основе двух рассмотренных выше методик, показали, что результаты расчетов не всегда совпадают. При небольших дальностях связи, примерно до 130 км, результат расчета по первой методике будет больше результата по второй методике, затем результаты совпадают, а при дальностях больше 150 км – результаты расчета по второй методике будут больше, чем по первой. Какая из методик дает более точный результат сказать сложно, поэтому, на наш взгляд, при расчете тропосферных трасс, расположенных на территории бывшего СССР, целесообразно использовать среднее значение h02, от рассчитанных по двум этим методикам.

 

3.16      Определение длительности замираний

В некоторых случаях, особенно при моделировании замираний, требуется знать длительность замираний. В соответствии с [11] длительность релеевских замираний будем определять по формуле:




(3.26)

где Emin/Emed – глубина быстрых замираний по отношению к медианному значению. Определяется для заданной надежности связи в соответствии с


п. 2.2.1.1.1;

σ – среднеквадратическое отклонения глубины замираний, для графика, по которому определялась глубина замираний σ=0,84;

fd=V/λ – доплеровский сдвиг,

где V – относительная скорость движения переотражающего объекта (м/сек), в данном случае скорость ветра в объеме рассеяния тропосферы;

λ – длина волны несущего излучения (м).


3.17      Оценка качества радиоканала

Оценку качества радиоканала будем производить по вероятности битовой ошибки в условиях белого гауссова шума, при отсутствии помехоустойчивого кодирования. Вероятность ошибки с учетом используемого вида модуляции находим по формуле [5]:




(3.27)



m – коэффициент, зависящий от вида модуляции и типа модулирующего сигнала.

m=0,5 для АМ,

m=1 для ЧМ,

m=2 для ФМ.






(3.28)

где Eb – энергия на 1 бит;

N0 – спектральная плотность мощности шума;

М – количество уровней модуляции;

Δf – полоса пропускания входного фильтра. При ЦОС обычно применяется цифровой фильтр с Δf=V;

V – битовая скорость передачи информации.

При условии применения такого цифрового фильтра уравнение (3.28) можно записать в виде:




(3.29)

В условиях белого гауссова шума для случайной бинарной величины, которая может принимать два различных значения и априорная вероятность передачи каждого их этих значений 1/2, полная вероятность ошибочного приема в общем виде определяется по формуле [5]:




(3.30)



Е – энергия разностного сигнала;

N0 – спектральная плотность мощности шума.

Для многоуровневой модуляции вероятность ошибочного приема будет определяться по формуле:



(3.31)

где М – количество уровней модуляции.

Рейтинг@Mail.ru