Two memoirs, published under one cover by the Peabody Institute of American Archæology and Ethnology, relate to explorations by George Byron Gordon in two districts of Honduras, affording relics different in character. The work at the ruins of Copan having been suspended during 1896 and 1897 by some act of the Government of Honduras, Mr. Gordon had to turn his attention elsewhere, to explorations the results of which are given under the titles of Researches in the Uloa Valley and Caverns of Copan, Honduras. The investigations in the Uloa Valley afforded a rich fund of objects of interest and of novel character – pottery adorned with elaborate and remarkably artistic designs, stone images, whistles, terra-cotta stamps, and only one idol. Human remains, of the most meager description, in connection with the pottery furnish reasonable evidence of burial places, but, being only crumbling fragments of bone, are too minute to supply any information respecting the form of burials or the relative position of the objects associated with them. The conclusions are drawn that the valley was at one time well populated, but not for any length of time occupied by the people whose ruined buildings of stone are found in the region up to southern Mexico, and that it was visited by several distinct peoples in ancient times. Some mounds covered with stone were discovered which deserve further investigation. Five caves of different size and character, described in the second memoir, were explored near Copan, and afforded objects peculiar to themselves and evidences of sepulture. They were very dusty, although stalactites had formed in some of them, and, although undoubtedly used by man many centuries ago, they do not seem to indicate a constant occupation for an extended period of time, or to furnish evidence of an extreme antiquity of man in the region. The most striking feature about them is probably the entire difference in character of the pottery from that found at Copan, only a few miles away, and its want of resemblance with the pottery of any other locality with which the author is familiar.
A series of Bulletins, Some Miscellaneous Results of the Work of the Division of Entomology, of the United States Department of Agriculture, is intended to furnish such material as was formerly published in Insect Life, presenting the results of observations made in the office of the bureau which are not extensive enough upon any one topic to form an independent and complete bulletin. The second number contains notices by different authors, mostly connected with the bureau, on twelve insects predatory on economical plants, with numerous "general notes" and correspondence.
Under the Stars, and Other Verses, is a small collection of ballads, relating chiefly to naval fights, by Wallace Rice and Barrett Eastman, published by Way & Williams, Chicago. It is dedicated "to the wider patriotism," and appears well adapted to inflame the martial spirit, which is in this country already excited to an extremely unhealthy extent.
Agricultural Experiment Stations. Bulletins and Reports. Cornell University: No. 150. Tuberculosis in Cattle and its Control. By James Law. Pp. 30; No. 151: Gravity or Dilution Separators. By H. H. Wing. Pp. 12 – Purdue University: No. 72. Field Experiments with Wheat. Pp. 12. – United States Department of Agriculture. Biological: No. 9. Cuckoos and Shrikes in their Relation to Agriculture. By F. E. L. Beal and S. D. Judd. Pp. 26: No. 10. Life Zones and Crop Zones of the United States. By C. Hart Merriam. Pp. 79; No. 11. The Geographic Distribution of Cereals in North America. By C. S. Plumb. Pp. 24; Botany: No. 20. Principal Poisonous Plants in the United States. By V. K. Chesnut. Pp. 60.
Alexander, Archibald. Theories of the Will in the History of Philosophy. New York: Charles Scribner's Sons. Pp. 353. $1.50.
Allen, Alfred H., and Leffmann, Henry. Commercial Organic Analysis. Third edition. Vol. I. Philadelphia: Blakiston's Son & Co. Pp. 557. $4.50.
Babbler, The. Semimonthly. June and July, 1898. New York: E. Rock, 406 Fourth Avenue. Pp. 8. 10 cents. $2 a year.
Baillière, J. B., et Fils, 19 Rue Hautefeuille, Paris. Revue Mensuelle de Bibliographie Scientifique (Monthly Review of Scientific Bibliography), August, 1898. Pp. 20.
Carter, J. M. G. Advances in the Domain of Preventive Medicine. Waukegan, Ill. Pp. 13.
Chemical Publishing Company, Easton, Pa. Catalogue. Pp. 26.
Columbia University Bulletin, June, 1898. Pp. 102, with plate.
Creighton, J. E. An Introductory Logic. New York: The Macmillan Company. Pp. 392. $1.10.
Drake, N. F. A Geological Reconnaissance of the Coal Fields of the Indian Territory. Leland Stanford, Jr., University, Palo Alto, Cal. Pp. 96.
Fitz-Maurice-Kelly, James. A History of Spanish Literature. New York: D. Appleton and Company. (Literature of the World Series.) Pp. 423. $1.50.
Holden, Edward S. The Earth and Sky. A Primer of Astronomy for Young Readers. (Appletons' Home-Reading Series.) New York: D. Appleton and Company. Pp. 76, with plates. 28 cents.
Hering, Rudolph, New York. Dilution Process of Sewage Disposal. Pp. 9. – Bacterial Processes of Sewage Disposal. Pp. 14.
Industrialist, The. Ten times a year. June, 1898. Kansas State Agricultural College, Manhattan. Pp. 80. $1 a year.
Iowa Geological Survey, Vol. VIII. Annual Report for 1897, etc. Samuel Calvin, State Geologist. Pp.427.
Japan-American Commercial Journal. Monthly. Tokyo (Japan) Commercial and Industrial Association. (English and Japanese.) Pp. 80.
Jordan, David Starr. Lest we Forget (address to graduating class). Pp. 36. – Description of a Species of Fish (Mitsukurina owsteni) from Japan, the Type of a Distinct Family of Lamnoid Sharks. Pp. 8, with plates.
Kindergarten. The, Review. Monthly. Springfield, Mass.: Milton Bradley Company. Pp. 64. $2 a year.
Lambert, P. A. Differential and Integral Calculus; for Technical Schools and College. New York: The Macmillan Company. Pp.245. $1.50.
Luce, W. B., Hingham Centre, Mass. Kites and Experiments in Aërial Photography. Pp.32. 25 cents.
MacCurdy, George Grant, and Mohiliansky, Nicolas. Indices Ponderaux du Crane (Weight Indices of the Brain). Paris. Pp. 16.
MacClure, Theodore R. A Quarter-Century of Public Health Work in Michigan. Lansing. Pp. 48.
Mivart, St. George. The Groundwork of Science. A Study of Epistemology. New York: G. P. Putnam's Sons. Pp.328. $1.75.
Musick, John R. Lights and Shadows of our War with Spain. New York: J. S. Ogilvie Publishing Company. Pp. 224.
Muter, John. A Short Manual of Analytical Chemistry, Qualitative and Quantitative – Inorganic and Organic. Second American edition. Philadelphia: Blakiston's Son & Co. Pp. 228. $1.25.
New Jersey, Geological Survey of. Annual Report of the State Geologist for 1897. Pp. 368.
New World, The. A Quarterly Review of Religion, Ethics, and Theology. September, 1898. Boston: Houghton, Mifflin & Co. Pp. 200. 75 cents. $3 a year.
New York State College of Forestry at Cornell University. Announcement. Pp. 40.
Shufeldt, Dr. R. W. On the Alternation of Sex in a Brood of Young Sparrowhawks. Pp. 4.
Smith. William B. Infinitesimal Analysis. Vol. I. Elementary; Real Variables. New York. The Macmillan Company. Pp. 852. $3.25.
Thomson, J. J. The Discharge of Electricity through Gases. New York: Charles Scribner's Sons. Pp.203. $1.
University of Tennessee Record. Knoxville. Pp.80.
Venable, F. P., and Howe, J. L. Inorganic Chemistry according to the Periodic Law. Easton, Pa.: The Chemical Publishing Company. Pp.266. $1.50.
Wilson, L. L. W. History Reader for Elementary Schools. New York: The Macmillan Company. Pp. 403. 60 cents.
Wright, Mabel Osgood, and Chapman, Frank M. Four-footed Americans and their Kin. New York: The Macmillan Company. Pp. 432. $1.50.
Carbonic Acid and Glaciation. – In a paper on Hypotheses bearing on Climatic Changes, Prof. T. C. Chamberlin takes up a suggestion of Tyndall's that the periods of terrestrial glaciation might be dependent upon the carbon dioxide of the atmosphere, the peculiar competence of which to retain solar heat he had demonstrated. Following out the doctrine of atmospheric loss on its own lines, although only in a tentative way as yet, he seems to find a rhythmical action that may in part explain the glacial oscillations. The idea, he says, hinges on the action of the ocean as a reservoir of carbon dioxide, and on the losses of the organic cycle under the influence of cold. Cold water absorbs more carbon dioxide than warm water. As the atmosphere becomes impoverished and the temperature declines, the capacity of the ocean to take up carbonic acid in solution increases. Instead, therefore, of resupplying the atmosphere in the stress of its impoverishment, the ocean withholds its carbon dioxide to a certain extent, and possibly even turns robber itself by greater absorption. So also, with increased cold the progress of organic decay becomes less active, a greater part of the vegetal and animal matter remains undecomposed, and its carbon is thereby locked up; and hence the loss of carbon dioxide through the organic cycle is increased. The impoverishment of the atmosphere is thus hastened and the epoch of cold is precipitated. With the spread of glaciation the main crystalline areas whose alteration is the chief source of depletion become covered and frozen, and the abstraction of carbon dioxide by rock alteration is checked. The supply continuing the same, by hypothesis, re-enrichment begins, and when it has sufficiently advanced warmth returns. With returning warmth the ocean gives up its carbon dioxide more freely, the accumulated organic products decay and add their contribution of carbonic acid, and the re-enrichment is accelerated and interglacial mildness is hastened.
Additions to the Missouri Botanical Garden. – We learn from the ninth annual report of the Missouri Botanical Garden that while the decorative features were maintained in 1897 in about the same manner as heretofore, considerable additions have been made in certain classes, especially orchids, and the collections of cultivated species, with their named varieties, are now estimated to number about five thousand. Circumstances made possible material additions to the contents of the herbarium; and, besides the purchased current collections, rather larger and more numerous than usual, the garden has secured the herbarium of the late J. H. Redfield, very rich in earlier collections representing the flora of the United States; the herbarium of the late Dr. J. F. Joor, containing 4,133 specimens, and largely adding to the representation of the flora of Louisiana and Texas; the interesting herbarium of Gustav Jermy, of San Antonio, Texas, containing a very full set of Carpathian plants and a nearly complete local flora; the important pre-Linnæan herbarium formed by Boehmer and Ludwig; and a Chinese collection by Dr. A. Henry. Even larger additions were made to the library. The instruction of garden pupils was continued, and the garden was visited by several research students. Among the scientific papers accompanying the report and bound with it are those of C. H. Thompson on American Lemnaceæ; N. N. Glatfelter on Salix longipes; H. C. Irish on the Genus Capsicum; A. S. Hitchcock on Cryptogams collected in the Bahamas, Jamaica, and Grand Cayman; J. N. Rose on Agaves; C. H. Thompson on Cacti Anhalonium; and seven shorter papers under the heading of "Notes and Observations."
The Indian Idea of the "Midmost Self." – In attempting to explain the significance of a pentagonal stone dodecahedron with vestiges of figures on it found near Marietta, Ohio, Dr. J. C. Morris assumed that, besides the Aryan idea of three dimensions of space, there is, to the Indian and to the Eastern mind, another – the fullness. "It is not the length and breadth and thickness of a cube, for instance, but the whole of it, which is as much to be considered as any one of its sides. A cube would therefore be represented numerically by seven, a dodecahedron by thirteen. Among the Mexicans the thirteen lunar months would thus correspond in the year with the twelve zodiacal signs and the earth which passed under and embraced them all." Again, the five digits came to be a measure of man's power or individuality, and thus a sacred number. A pentagonal dodecahedron, then, might be the emblem of the world; and the best time to be active in some contemplated pursuit might be shown by the zodiacal sign that came uppermost when the dodecahedron was thrown or rolled with appropriate ceremonies. As Mr. Frank H. Cushing interpreted the doctrine at the same meeting of the Anthropological Society, when the primitive man contemplates or considers himself or anything in its relation to space or the surrounding directions, "he notices that there is ever a front or face, a rear or back; two sides, or a right and a left; a head and a foot, or an above and a below; and that of and within all of these is himself or it; that the essence of all these aspects in anything is the thing itself – that is, the thing that contains their numbers or sum, yet is one by itself. This is indeed the very key to his conception of himself and of anything in relation to space and the universe or cosmos. He observes that there are as many regions in the world as there are aspects of himself or sides to any equally separate thing; that there are as many directions from him or his place in the world (which is his 'midmost' or place of attachment to the Earth-mother), or from anything in the world (which is its midmost or natural station), toward these corresponding regions. Hence to him a plane would be symbolized not by four, but by five – its four sides and directions thence, and its central self – as was actually the notion of the prairie tribes; a cube, not by six, but by seven, as was the notion of the valley Pueblos and Navajos; a dodecahedron, not by twelve, but by thirteen, as was the notion of the Zuñis, the Aztecs, and apparently – from this example – of the mound builders as well."
The Bactrian Camel for the Klondike. – The great Siberian or Bactrian camel is recommended by Mr. Carl Hagenbeck, the famous Hamburg importer of wild beasts, as the best animal for the Klondike climate. It is at home in the coldest regions, can carry or go in harness, can cross mountains or traverse valleys, and is so easily supplied that Mr. Hagenbeck can undertake to deliver any number in New York, duty paid, for three hundred dollars each. It can endure thirst and long spells of hunger as well as freezing cold, and is not too delicate to make its bed on the snow. It sheds its coat before the summer heat, but as the cooler weather of the fall comes on "it grows a garment of fur almost as thick as a buffalo robe and equally cold-resisting. It is far more strongly built than the southern camel. It does not 'split' when on slippery ground, though it falls on moist, wet clay which yields to the foot. On ice and frozen snow it stands firmly, and can travel far." It is said that an excellent cross can be made between the male Bactrian and the female Arabian camel; but when the parentage is reversed the progeny is useless. General Harlan is said to have marched two thousand Bactrian camels four hundred miles and crossed the Indian Caucasus in ice and snow, with the loss of only one animal, and that by an accident. This camel is native to the high plateaus, steppes, and deserts of Mongolia and South Siberia, and it has been found wild on the plain of Tsaidam, maintaining itself in this "arid, cold, and waterless region, where the herds are said to travel seventy miles to drink. Nothing," we are further told, "but too much comfort or a damp climate seems to hurt it. For food it prefers dry, salty plants and bushes and grows sick and lean on good pasture. The salty efflorescence of the steppes is eagerly eaten by it, and in this country it prefers dry food, especially wheat straw and hay. Prjevalski's camels would eat almost anything – straw, bleached bones, old pack saddles, straps, and leather. The Mongols told him of camels which had been without food a long time, and then devoured an old tent belonging to their owner. They even ate meat and fish, and one of the traveler's camels made a meal of the bird skins ready for stuffing."
Nicaragua and its Ferns. – Tropical America is described by B. Shimek, in a paper on the Ferns of Nicaragua, as the fern paradise of the earth. "No other corresponding division of the earth's surface," he says, "presents as great a total number of species, or as many species which are peculiar to it. Nowhere else is the great variation in form and size, in structural characters and habits of growth, and in the arrangement and character of the reproductive organs, better shown than here. This richness in the fern flora, exhibited in almost unlimited variety, is, no doubt, accounted for by the topography and contour of that part of the American continent which lies within the tropics. It is narrow when compared with the continents of the Old World, and it contains high mountain chains, which form its longest axis. Its narrow form brings all of it more or less within the influence of the adjacent oceans, which furnish to most of it an abundance of moisture. Its high mountains supply all the conditions effected by altitude, and, moreover, cut off the otherwise abundant moisture from certain areas. We have thus within comparatively restricted limits all the possible degrees of moisture and temperature, and the effect of environment finds abundant expression in the great variety of fern structures." After palms, ferns form the most conspicuous feature of tropical vegetation, and in size they vary from species only a fraction of an inch high to splendid tree ferns or vines single fronds of which are more than thirty feet long. In texture "some rival the flimsiest lace, while others develop thick, leathery fronds… In habit the variation is fully as great. In western Nicaragua, for example, where there is a distinct dry season, ferns growing on bare volcanic rock become so dry that they may be ground to powder between the fingers, and yet they retain life; while in the eastern part, with its deep jungles in which perpetual shade and moisture prevail, the more delicate as well as the more gorgeous forms have full opportunity for the development of their many peculiarities." In a very small territory of Nicaragua, including a strip along the San Juan River in no case extending more than six miles away from it, and in the little island of Ometepe in Lake Nicaragua, Mr. Shimek, in less than four months, while engaged in general botanical work, collected more than a hundred and twenty species of ferns; and yet only about one fifth of one hundred and twenty-one species recorded by Fournier, two fifths of one hundred and thirty-five species credited by Hemsley to Nicaragua, and two fifths of those reported by Baker and Hemsley from adjacent Costa Rica, occur in his list.
Wave Length and other Measurements. – Describing the measurement of absolute wave length before the Astronomical and Physical Society of Toronto, Mr. A. F. Miller remarked that a somewhat incorrect idea prevailed as to the smallness of the space occupied in the performance of luminous undulations; in fact, some people seem to regard the wave length of light as something almost inconceivably small. Really, however, we are familiar with much smaller dimensions. For instance, the author had found from actual measures that the wave length of one of the characteristic lines in the spectrum of sodium vapor was very nearly equal to 1/42000 of an inch. The thickness of ordinary gold leaf is given as 1/282000 of an inch, from which it becomes evident that the wave length of sodium light, which is an average wave length for the visible spectrum, is six and a half times as great as the thickness of gold leaf. Such a dimension as 1/42000 of an inch could readily be measured by a suitable micrometer; but of course the waves of light, as well as the ether particles by which they are transmitted, are entirely invisible, and even were this otherwise the frequency of the undulations is so inconceivably great that the actual phenomena of the movements could never become perceptible. In measuring the absolute wave length, therefore, we are forced to take the indirect method of observing the results of undulations in cases where, by a suitable arrangement of the experiment, equal and opposite phases of vibration are made to arrive simultaneously at the same spot, so producing phenomena of interference.
The "Causses" of Southern France. – It is surprising to find existing, in a country so old and supposedly so familiar as France, a region similar to our Colorado plateau, full of cañons, caves, and cliff dwellings, until recently almost unknown and wholly unexplored. Yet such is the region of the Causses, described and illustrated with a striking series of lantern views, before the American Association for the Advancement of Science, by the well-known cave explorer, Dr. H. C. Hovey, of Newburyport, Mass. The local name Causse, derived from the Latin calx, lime, is applied to a limestone area, and here to a limestone plateau. Along the western slope of the Cévennes Mountains lies an elevated table-land, chiefly of Jurassic limestones, which had been cut and carved by the streams, especially the Tarn and its affluents, into a group of high plateaus separated by deep cañons. The cliffs of the Tarn Valley are from one to two thousand feet and even more in height, and with their precipitous sides and the brilliant and varied coloring of their strata are not unworthy of comparison with our own great cañon regions of the West. At some points, where the beds are markedly unequal in hardness, the weathering process has resulted in structures as remarkable as Monument Park or the Garden of the Gods. Such is the "rock city" known as Montpellier-le-Vieux, at the junction of the Jonté and the Durbais, on the Causse Noir. This strange area of natural ruins covers some two thousand acres with a fantastic similitude of castles, palaces, streets, and temples. It seems surprising that a country so picturesque for the tourist and so interesting for the geologist should have remained almost unknown till the present time. Fine roads pass over and around it, but they avoid the wild and rugged portions that possess such scenic interest, and leave the Causses – as they have been for ages – barren solitudes, occupied only by shepherds with their huts and flocks. The people, also, as is so often the case in such regions, have a superstitious dread of the deeper caverns and the seeming ruins, and do not lend themselves readily to exploration. The cliffs are full of caves, some of which – the more accessible and simple – are used as sheepfolds, and even in some cases inhabited, but the wilder ones are held in dread. It seems that cliff dwellings are actually still in use to some extent in this region. The French Société de Spéléologie has now for some years been investigating the Causses with great interest. Ere long this will become a favorite region for tourists; but at present one must leave all ordinary facilities of travel and take to canoes and mules. This was done by Dr. Hovey and his party, under the leadership of M. Edouard A. Martel, of Paris, who has been one of the most active explorers. They entered and traversed many remarkable caves, some never before visited, and some that have been previously explored by M. Martel and others of the société. One of these, known as the Baumes Chaudes, is a great triple cavern, one of the main branches of which had yielded a large number of prehistoric skeletons to Dr. Prunières, of Marvejol. In the third division are a number of deep pits, locally called "wells," from forty to a hundred and thirty feet deep; these communicate with lower passages and subterranean streams. They are death-traps to animals, the remains of which, of many kinds and in all stages of decomposition, accumulate at the bottom, and are gradually covered by stalagmitic deposits. Another remarkable cave was discovered and named after its daring and enthusiastic explorer, M. Louis Armand, of Paris. It can only be entered by a "well" two hundred and forty feet deep, and below this lies another of still greater depth. The party was provided with rope ladders for use in such places; and the intrepid investigator who essayed the descent went down, by actual measurement, six hundred feet from the surface. He described the stalactites as magnificent. Both from a geological and an archæological point of view this account was of unusual interest. Dr. Hovey had many beautiful views of the cañons and the cave openings in their walls; while his observations, and those of the Société de Spéléologie, are very curious as to the persistence, in this strangely overlooked region, of conditions closely akin to what are usually called "prehistoric" times.
Molecular Asymmetry and Life. – Speaking in his presidential address to the Chemical Section of the British Association on Stereochemistry and Vitalism, Prof. A. R. Japp expressed the conclusion that "the production of single asymmetric compounds or their isolation from the mixture of their enantiomorphs [or opposite forms] is, as Pasteur firmly held, the prerogative of life. Only the living organism, with its asymmetric tissues, or the asymmetric productions of the living organism, or the living intelligence with its conception of asymmetry, can produce this result. Only asymmetry can beget asymmetry. The absolute origin of the compounds of one-sided asymmetry is a mystery as profound as the absolute origin of life itself. The two phenomena are intimately connected… No fortuitous concourse of atoms, even with all eternity for them to clash and combine in, could compass this feat of the formation of the first optically active organic compound. Coincidence is excluded, and every purely mechanical explanation of the phenomena must necessarily fail. I see no escape from the conclusion that at the moment when life first arose a directive force came into play – a force of precisely the same character as that which enables the intelligent operator, by the exercise of his will, to select one crystallized enantiomorph and reject its asymmetric opposite. I would emphasize the fact that the operation of a directive force of this nature does not involve a violation of the law of the conservation of energy."
Dr. Russell's Photographic Researches. – At the recent meeting of the British Association at Bristol, Dr. W. T. Russell gave, before the Chemical Section, some further information regarding his recent researches on the surprising action exerted by certain substances in the absence of light on photographic plates. The Journal of the Society of Arts gives some of his more striking results: "Some ordinary type, a portion of the cover of Punch, and the wrapper of a packet of tobacco produced strongly defined pictures; the last mentioned was particularly interesting, inasmuch as the red ink had proved active, the blue inactive. Strangely, writing ink (old-fashioned) is quite inactive, and paper having writing on it in ink, even over a hundred years old, when placed between a sheet of active material and a sensitive plate, yielded a picture in which the writing appeared quite distinctly, white on black, in spite of the original being in some cases indistinct; ferrous sulphate behaves like ink. The list of materials that are active is very long, and includes wood, which gives a picture of the grain and knots. Many metals are active, but zinc is very active only when bright, so that a dirty sheet of zinc rubbed with sandpaper gives a picture of the scratches. Many alloys are also active, pewter and fusible metal being two of them, and curiously some brasses are, while others are not. The effective agency that passes from the material to the sensitive plate shows peculiarities. It passes through gelatin, gutta-percha, celluloid, collodion, wet gum arabic, and some paper, while other paper, glass, minerals transparent to light, and many other substances are opaque to these emanations, and some striking effects were exhibited demonstrating the interference of these opaque substances when interposed between an active substance and the sensitive plate. For instance, a five-pound note placed printing downward on the sensitive plate gave a picture of the printing inscription, but when placed under a zinc plate with the printing toward the zinc plate it gave a picture of the opaque paper with the water marks distinctly showing, and, what is still more astonishing, the zinc plate, after contact with the note, itself yielded a picture of the inscription, showing that the influence from the ink had passed to the zinc plate. It was noteworthy that the signature was not in writing ink. A cutting from the Times, the paper being transparent, showed a picture of the printing on both sides; the picture, moreover, was reversible, showing that a perfect picture of both sides of the paper had been impressed on the one plate. This interesting phenomenon is, however, not quite explained, but the great amount of work he has done leads him to the provisional opinion that the effect is due to the evolution of hydrogen peroxide."
Scientific "Trade Hunting." – The recent movement in England toward the establishment by the Government of a commercial intelligence office for the securing and diffusion of information regarding foreign trade has given rise to considerable discussion among the English trade papers. The business of the office is to be the gathering of general information of interest and value to the English merchant with a foreign trade, and especially of pointing out new ways for the extension of foreign commerce, and calling attention to possible new markets for English goods. A number of schemes have been proposed, among others that of sending an expert once every year or two to the different foreign "trade areas," for the purpose of collecting information and samples, and of giving a trustworthy estimate of its commercial prospects; another, that of extending the consular reports in such a manner as to compass the same ends. There is considerable opposition to the scheme from some branches of business, where it is held that no one is so likely to get hold of useful information as the trader himself, and that the publishing of such Government reports as the scheme contemplates would result in giving the information to foreign as well as English traders, and thus negative whatever advantage might come to the English merchant from his individual discovery of a valuable market.