bannerbannerbanner
полная версияAppletons\' Popular Science Monthly, November 1898

Various
Appletons' Popular Science Monthly, November 1898

Полная версия

The lectures conducted in Our House are of a twofold character – individual discourses and a series of discussions of a given topic. Every Wednesday evening between November and April is provided with a speaker by the lecture committee, who treats in a popular manner a subject of his own choice, and allows the auditors at the close of his talk to ask questions regarding the topic in hand. The average number of persons attending these lectures last winter was about three hundred, and the charge for a single admission is two cents, with a considerable reduction when four or six tickets are purchased for one family. In the course lecture the most popular topic so far has been natural science, especially botany, physics, and chemistry. In this connection it is interesting to note that the luxuriant flora of the East Indies, with which the Dutch became acquainted long ago, gave an impetus in Holland to the study of botany. The people of all classes are fond of plants and flowers, and it is not surprising to learn that twenty persons followed a course of instruction in botany. A prominent physician of Amsterdam gave a course of ten lectures upon "The First Aid to the Injured," and eighty men and women profited by the practical discussion of this subject. The cost of these lectures is four cents apiece.

Somewhat related to the above are the concerts, Sunday evening meetings, and performances of various kinds which are given under the auspices of the appropriate committees. Perhaps one of the most profitable evenings of the winter is when manufacturers and employers are invited to meet those of the working class who may wish to be present to discuss in an informal manner questions of common interest. Under the genial leadership of Mr. Janssen and the director, much of the restraint usual on such occasions is thrown aside and the employer and employee sit side by side, and each listens to the undreamed opinions and experiences of the other. At one of these meetings the question of a shorter work day was discussed from the standpoint of the employer, the laborer, and the humanitarian. The investigations of our own Bureau of Labor were quoted to show the benefits resulting from a shortening of the day of work, and it is more than likely that the outcome of the discussion will be an intention on the part of the manufacturer to curtail the hours of work just as soon as possible, while the laborers, in learning of obstacles of which they were ignorant, will await more patiently the action desired.

The classes or individual pupils contribute their services to the committee in charge of entertainments. This committee sees to it that three Sunday evenings of each month are provided for, either from the ranks of home talent or with the aid of outside artists. In the concerts some of the best performers of the land have gladly taken part, and the music of the greatest composers has been heard here. As in all other cases, there is a charge for admission – four cents for one and six cents for man and wife. A feature here in vogue might well be copied. In arranging the selections for a concert the effort is made to always include at least one popular piece, or a song of national, artistic, or patriotic interest; then on the programme the words of this song are printed. The audience may be asked to join in the chorus, but even if this is not practical the people can catch the air, and with the words before them in later days they can make melody in their homes. If we recall the class of people for whom these provisions are made, and keep in mind the limited avenues of enjoyment open to them, we will appreciate the boon of such a considerate act.

It might be tedious to enumerate the various classes here conducted, and give even in brief an outline of the methods, experiences, and results. Each lesson costs from two to four cents, and the pupils – many of whom have reached middle life – show a commendable zeal in prosecuting their studies. However, two topics deserve mention – the lessons in mending and in cooking. Since it is the poorer people who are to be benefited by the work of Our House, lessons in economy are needed, if not demanded, and the earlier opportunities for acquiring these lessons have been meager. The authorities have therefore wisely decided to so instruct the housewives of these people that their clothing may look well even if mended and the family meals be palatable though simple. It is believed that the result of such teaching will make many homes more attractive, and keep the men from seeking outside of the house conditions which they should find within.

The clubs also serve as valuable adjuncts to the work in hand. They are usually groups of persons of the same sex and near the same age who meet under the guidance of some experienced man or woman for social intercourse, for practice in debate, playing of chess, the reading of some standard author, or the discussion of places and peoples. In all of these meetings, as well as under all circumstances, the people in attendance are taught polite behavior by example rather than precept, and every precaution is taken to avoid any reflection or invidious comparisons that might tend to keep away the people whom Our House is intended to benefit.

A word might be said about the travel club. Early in each autumn a proposition is made that during the following summer a trip will be taken to such and such places, usually naming one near by, within the kingdom, and another farther away, as Brussels or the upper Rhine. Persons desiring to visit either of the places named unite in forming a club. They meet at stated times to listen to accounts of the place selected, its historical associations, and the points of interest en route, and also to pay into the treasury an amount agreed upon. For example, last summer one club, upon the saving of a cent a week by each member, was able to go to Haarlem and spend the day in seeing the city and the many places of interest in the neighborhood. In another, each member contributed ten cents a week, and the club was able to make a two days' trip to Brussels. By this simple means persons otherwise unable to go beyond the confines of their native city have the opportunity to get at least a glimpse of the outside world, and under such conditions and with such special preparations as to obtain from the trip the maximum interest and profit.

The only thing that is free in Our House is legal advice and the writing of legal documents. In Amsterdam, as elsewhere, the poorer people have too frequently an exaggerated idea as to their rights, and rush into "law" for fatuous protection. Such persons are liable to fall into the hands of unprincipled lawyers who help to nurse the fancied wrong and encourage a suit for damages, or put up an idle defense for the sole purpose of winning a fee. To protect this class by giving them the most unselfish advice possible, a number of the best lawyers of the city have cheerfully offered their services, and every Thursday evening from eight to twelve o'clock one or two stand ready to give gratuitously the best advice they can upon such legal points as may be presented. That this service is appreciated may be seen in the fact that from ten to twenty persons profit by this privilege every evening. On this evening persons are present for the purpose of writing letters for those unable to write, and also to draw up legal documents for such as need them.

Mr. Adma van Scheltema – a name closely identified with every good work in Amsterdam – has organized in Our House art loan exhibits. For one half of the days during which the exhibit is open there is no charge for admission, while a slight fee is exacted on the other days. From these exhibitions much pleasure as well as instruction has been derived, and, located in a section which sends but few visitors to the art museums, one can realize that they perform a good work, as missionaries in cultivating the people's taste.

Such is, in short, an account of a practical charity – a charity, in truth, not because something is furnished for nothing, but that so much is given in return for so little. During the past year more than three thousand persons were registered as enjoyers of the privileges offered. Mr. Janssen gave the building and in one sense endowed the work; Mr. Tours gives his time, wisdom, and energy in directing its affairs; they both ask the wiser men and women of the city to give a few hours of each month or year. They have not asked in vain, and the cheerful responses give promise of the coming of the time when the only answer to the question, "Am I my brother's keeper?" will be an energetic "Yes."

SKETCH OF FRANK WIGGLESWORTH CLARKE

FRANK WIGGLESWORTH CLARKE.


The great advance which chemical science has made in the United States during the past thirty years has been brought about by the joint operation of several factors, of which we may mention the formation and the influence of chemical societies seeking to further its development, the intelligent labors of individual investigators cultivating special fields, and the systematic pursuit of experimental work with reference to certain definite results. In this shaping of chemical research in such a way as to make it most efficient, the work and influence of Frank Wigglesworth Clarke have been prominent and important. His own labors have been industriously and unselfishly pursued with an eye to the advancement of the science, and their value has been generally recognized. It seems as if he had taken to himself a hint thrown out in one of his earlier scientific papers, and, giving up the transient glory of brilliant experiments, had devoted himself to setting the science as far forward as possible in single branches.

 

Professor Clarke was born in Boston, March 14, 1847, and was graduated from the Lawrence Scientific School of Harvard University in 1867. Two years later, in 1869, he was appointed instructor in chemistry in Cornell University, the first assistant ever appointed at that institution. His next position was that of professor of chemistry and physics in Howard University, Washington, in 1873 and 1874. In the latter year he became professor of chemistry and physics in the University of Cincinnati, in a position which he held till 1883, when he became chief chemist to the United States Geological Survey and honorary curator of minerals in the United States National Museum, where he still remains.

Professor Clarke, having become a member of the American Association for the Advancement of Science in 1869, assisted, in 1875-'76, in the organization of its section on chemistry, a branch which had theretofore been but little represented in the Proceedings of the association. Prof. S. W. Johnson was elected chairman of the new section for the meeting in 1876 at Detroit, and Professor Clarke was commissioned to make the necessary efforts to insure a full attendance of chemists and others interested in the applications of chemistry. In 1888 he presided over the section; and he has ever been active in building it up, and in the development of the American Chemical Society.

Professor Clarke has published about seventy-five scientific papers in various journals, and many popular articles, especially in Appletons' Journal and the Popular Science Monthly. His first scientific paper, A New Process in Mineral Analysis, was published in the American Journal of Science for March, 1869. Other important papers have related to analytical methods, to the constitution of the tartrates of antimony, and to topics on chemical mineralogy, including especially the constitution of the silicates.

Many of his popular articles relate to educational affairs, and present forcible arguments for a fuller recognition of science in the course of instruction, and cogent demonstrations of the need of better teaching of science and better qualified teachers. When occasion has arisen, he has fearlessly exposed and denounced humbug in education. In a paper on The Higher Education, published in the seventh volume of the Popular Science Monthly, having defined the purpose of true education as being "to develop the mind; to strengthen the thinking faculties in every possible direction; to render the acquisition of new knowledge easier and surer; to increase the student's resources; and to render him better fitted for dealing with the useful affairs of the world," he sets forth the advantages of science over the ancient and even the modern languages for the accomplishment of it. Science, he reasons, furnishes as good an instrument for cultivating the memory, and has the additional advantage of strengthening the perceptive powers too, for in it the eye, the ear, and all the instruments of the senses are trained to observe facts accurately, as they are not trained to so great a degree in language study. It again takes the lead in the cultivation of the pure reason; for it gives grand laws and generalizations already deduced or in process of deduction. "The discovery of these natural laws may be counted among the greatest achievements of the human mind. To follow out the processes by which they were discovered gives the mind its most rigid training, and elevates the tone of thought in many other respects. The intellect becomes self-reliant and yet conscious of its own weak points." Also, in æsthetic development, scientific education is put foremost. "The true student of Nature and her phenomena ever sees order and symmetry coming out of chaos, and finds the rarest beauty hidden where to the unaided eye naught but ugliness exists… Can any student, who looks upon the universe with vision thus unobscured, fail to find in his studies the truest æsthetic culture?" But it had been alleged that the scientific courses had been tried in many American colleges and found less fruitful than the classical. In answer to this the author considered the character of most American colleges, the qualifications of many professed teachers and the methods of study, and showed that these, as they actually were, were not competent for the conveyance of genuine scientific instruction.

By the multiplication of competing colleges putting sectarian interests in the foremost place, the means were divided up and frittered away, which, concentrated in one institution, would hardly be enough to enable it to do really effective work. "Each college acts as a drag on all the others. Libraries, cabinets, and faculties are uselessly duplicated. Naturally, one result of this state of affairs is a lowering of educational standards… Since, on account of this foolish division of forces, most of these colleges are inadequately endowed, they are compelled to work short-handed. One professor has frequently several branches to teach… In the majority of cases there is a chair of Latin, a chair of Greek, and then – a chair of 'Natural Science.' Each linguistic professor is to some degree a specialist; while the one who teaches science is perforce compelled to be a smatterer. He is expected to teach half a dozen dissimilar branches, each one being a life work by itself. He is to be omniscient on about a thousand dollars a year."

That the character of these institutions, as well as their poverty, was detrimental to the advancement of scientific education was more fully shown in another article on American Colleges vs. American Science, in the ninth volume of the Monthly. The colleges were described as being to a large extent denominational institutions, "equipped and endowed with, due reference to the perpetuation of sound faith, and incidentally to the encouragement of what is supposed to be learning… The very fact that a college has been established for theological purposes, or for ecclesiastical aggrandizement, is adverse to good scientific research… Every year professors are chosen, not on account of scientific ability, but for reasons of a theological or sectarian character. If two men, one a Baptist and the other a Unitarian, were candidates for the same professorship in a Baptist university, the former, even if very much inferior to his rival, would almost certainly be elected… Theological soundness in such an institution far outranks scientific ability. If Laplace had lived in America, no college would have tolerated him for an instant. Almost any decayed minister, seeking an asylum, would have beaten him in the race for a professorship."

These conditions were shown to have necessarily a bad effect upon American science, and to be not likely to arouse or encourage the scientific spirit. The student "becomes accustomed to regard the sciences as comparatively unimportant," and "graduates in complete ignorance both of the methods and of the aims of science, having learned only a few disconnected facts concerning the great world about him."

Improvement in these conditions, the author argued, must come partly from within and partly from without. The colleges must reform their ways, and, not being likely to do it spontaneously, must be helped – by pressure of public sentiment and, later, of legislation. This suggestion proved to be introductory to that of a very important line of work, for the furtherance of which Professor Clarke seems never to have been able to labor too earnestly and industriously.

"But how," he says, "should public sentiment be properly shaped and made available for service? How is the natural, though slow, growth to be fostered and directed? Mainly by the efforts, organized and individual, of scientific men. Personally, every worker in science should strive to awaken in the community about him a comprehension of the value and purposes of his particular branch. In other words, the real investigators ought to do more toward popularizing their discoveries instead of leaving that task to amateurs or charlatans. At present, unfortunately, too many able scientific men depreciate popular work and hold aloof from it. They do nothing themselves to interest the public, and then lament the fact that the public does not become interested. Yet just here is where the beginning must be made. With a wider public interest in science will come deeper public appreciation, and this will develop the tendencies necessary for the improvement of our colleges and schools. Until the people see and recognize the difference between true investigators and mere collectors of specimens, between original workers and text-book authors, little real progress will be made."

While these pictures were correct, when made, of a very large number of American colleges, a vast improvement has taken place since the articles were written in the quality of instruction given; but there yet remain too many institutions to which they are still not inapplicable.

This was not the beginning of Professor Clarke's efforts to show men of science that the true interests of their cause lay in their making their knowledge easily accessible to the public. In the first volume of the Monthly he had an article on Scientific Dabblers, the purpose of which, as he defined it, was, after calling attention to the silly character of much that was called "popular science," to urge upon true scientific men the importance of rendering real knowledge more accessible to the masses. There is a demand for science, he said, "or the trash which is written would not be read. It works into nearly all departments of common life, and is, in one way or another, of interest to almost every one. Yet, as I have already said, the current popular lectures upon scientific topics are frothy and worthless; the theologian often misrepresents science for partisan purposes; and the newspapers, with all the good they may do, are too frequently conducted by those ignorant of all science. The people ask for knowledge, and unwittingly get much chaff with their wheat… Therefore it seems to be time that true students of science should seek to popularize their learning… Men of science constantly lament that the Government does not extend more aid to scientific research. The Government is a popular one, and the people must be trained before its help can be expected. Therefore it is for the interest of the teachers, as well as for the good of the people, that scientific truths should be popularly put forward in simple, untechnical language, and made accessible to all."

Later, in his chairman's address before the Chemical Subsection of the American Association, in 1878, he had this subject in mind, and mentioned it as part of the work of the section "to attract public attention to the subjects that interest us, and to do what we can to secure for chemistry a wider appreciation and greater means for development… If the general public," he said later in his address, "is not interested in chemistry, it is because we as chemists have neglected a part of our duty. We have but to speak, in order to command the public ear."

Another side of scientific advancement to which Professor Clarke's working life has proved him much attached is presented in this address at the American Association meeting of 1878, and more minutely as to the particular point we have in mind in an article on Laboratory Endowment, in the tenth volume of the Popular Science Monthly. In the association address he insisted strongly upon the physical side of chemical research, stated briefly as the study of the phenomena which occur during the reactions in chemical experiments, or of the transformations of energy, and upon the importance of the co-ordination of studies separately pursued to the systematic and permanent advancement of the science; for which purpose he considered endowed laboratories for research extremely desirable. In such laboratories adequate corps of thorough specialists should co-operate in those investigations which individuals could not undertake; every worker should be assigned to definite, positive duties, the accurate and careful performance of which would eventually be sure to advance exact knowledge. The work would be hard routine, and the real value of the institution would be independent of everything sensational, and would rest upon considerations of the most severely practical kind. As an example of such work he mentioned the study of the connection between the composition of a substance and its physical properties. Supposing this taken up systematically by a well-organized body of investigators, the first step would be to determine, carefully and with the utmost rigor, the physical properties of the elements. Each one of these substances would have to be isolated in quantity and in a chemically pure condition, such as has never been attained as to some – a labor which would of itself involve a great amount of research. Then would come the measurement of physical relations, thermal, electrical, optical, magnetic, mechanical, and so on; and the determination of all their "constants" under widely varied conditions, notably of pressure and temperature; labors which would in many cases involve the comparative testing of various methods of research, and often the invention of new experimental processes. The number of elements and of their compounds which should be taken up in some regular order, series by series, would afford almost illimitable fields of research to large numbers of students; all of whom, if laboring under some plan of systematic co-operation, might contribute directly and efficiently to the perfection of the science. "One chemist might undertake to furnish certain of the elements in a perfectly pure condition; another might carefully determine under varying circumstances their densities and rates of expansion; a third could work up their latent and specific heats; a fourth their electrical relations, and so on. Failure to attain grand results would be impossible. Doubtless the labor would prove irksome and monotonous, but the reward would be sure. In five years, more would be done toward rendering chemistry an exact science than can be accomplished in a century by means of chemical investigations at present most in vogue." Chemists engaging in work of this kind would have to make sacrifices, for it would offer little promise of sensational reputations to be gained through dazzling discoveries, and would have to look to the ultimate glory of the science for their chief reward.

 

Professor Clarke has not omitted to practice what he thus preached; and while he has not failed to win honors in other fields of the science, has made it the chief work of his scientific life to advance toward solution one of the physical problems of chemistry indicated above. He has taken as his special field of research the "constants," and of these, the one which is perhaps the most fundamental of all, the revision of the atomic weights – not by experiments of his own so much as by comparison and criticism of the work of all who have undertaken the task, eliminating errors and finding from the sum of the whole what is the nearest deducible approach to accuracy. In 1872 he sent to the Smithsonian Institution a compilation entitled A Table of Specific Gravities, Boiling Points, and Melting Points for Solids and Liquids. This was accepted by Prof. Joseph Henry, who made it the first publication of a projected series to be called The Constants of Nature. To this series Professor Clarke has since contributed Tables of Specific Heats, of Expansions, and a Recalculation of the Atomic Weights. A new edition of the Specific Gravities was issued in 1886, and a second edition of the Atomic Weights in 1897. For the past five years Professor Clarke has contributed an annual report on atomic-weight determinations to the Journal of the American Chemical Society, giving each year a consistent table of values brought thoroughly down to date. These tables are now used in all parts of the world as standards for reference.

As chemist of the United States Geological Survey, Professor Clarke has published ten official bulletins of work done in the laboratory under his charge, of which Bulletin 125, The Constitution of the Silicates, and Bulletin 148, Analyses of Rocks and Analytical Methods, by F. W. Clarke and W. F. Hillebrand jointly, are the most important. Other works are: Weights, Measures, and Money of All Nations, 1875; The Elements of Chemistry, a school text-book, 1884; and a Report on the Teaching of Chemistry and Physics in the United States, published by the United States Bureau of Education in 1881.

A paper published by him in the Popular Science Monthly for January, 1873 (Volume II), on Evolution and the Spectroscope, showed that the evolution of the planets from nebulæ was possibly accompanied by an evolution of the chemical elements. This was nearly a year in advance of Lockyer's first paper suggesting the same general view. The discussion of this subject was taken up again in the eighth volume of the Monthly (February, 1876), in an article, Are the Elements Elementary? in which the author, after showing how subtle connections significant of unity run through them all, inquired: "If the elements are all in essence one, how could their many forms originate save by a process of evolution upward? How could their numerous relations with each other, and their regular serial arrangements into groups, be better explained? In this, as in other problems, the hypothesis of evolution is the simplest, most natural, and best in accordance with facts. Toward it all the lines of argument presented in this article converge. Atomic weights, specific volumes, and spectra, all unite in telling the same story, that our many elements have been derived from simpler stock." These views were admitted to be speculative but not baseless. "Science is constantly reaching forward from the known to the unknown, partly by careful experiment and partly by the prophetic vision of thought." Then, speculation upon such questions "is not altogether unprofitable. The time spent in conjectures and surmises is not wholly wasted, for it is impossible to follow up any of the lines of thought thus opened without reaching some valuable suggestions which may pave the way to new discoveries. New truth, in one direction or another, is sure to be reached in the long run. So, then, we may proceed to theorize in the most barefaced manner without entirely quitting the legitimate domain of science." An article on The Present Status of Mineralogy, in the thirty-second volume of the Monthly, presents the mutual bearings of that study and chemistry and geology.

Professor Clarke contributed the chapter Element to the last edition of Watts's Dictionary of Chemistry. He was made president of the Washington Chemical Society in 1885, and of the Philosophical Society of Washington in 1896. He organized and had charge of Government exhibits, on behalf of the Department of the Interior, at the expositions of Cincinnati, Chicago, Atlanta, Nashville, and Omaha. He is a corresponding member of the British Association, of the Edinburgh Geological Society, and of the New York Academy of Sciences.

Рейтинг@Mail.ru