bannerbannerbanner
Азбука долгожителя

Валерий Новоселов
Азбука долгожителя

Есть ли нестареющие животные?

Если вы не отличите 20-летнего крокодила от 30-летнего, это не значит, что они одинаковые. Это лишь означает, что вы не видите разницы.


Интересный факт: когда я готовил эту самую главу, то выложил ее проект на свою страницу в социальную сеть[42]. И буквально за сутки под ней было около 300 комментариев, что показывает, что тема не просто интересная, а очень и очень занимательная.

Человек любит простые ответы на самые сложные вопросы. Даже временное оформление своей жизни в части механизмов он пытается найти у других видов – совсем у иных, думая, что так можно решить эту проблему. Просто и со вкусом. А факт, что многократные различия в продолжительности жизни во всем животном мире видны даже невооруженным глазом у самых близких видов, как бы всем очевиден. И основанием для такого подхода является наше рациональное мышление. И оно не плохое и не хорошее, оно просто такое, какое есть, и с ним часто бывают проблемы при использовании профессионального подхода. Так, есть наблюдения, когда совершенно разные виды, например птицы и рыбы, в абсолютно различной среде живут одинаково долго. И что нам это дает?

Часто при переносе данных с выбранных животных-моделей на другой вид происходит множество искажений и нерациональных выводов, затем печатаются статьи и получаются гранты. И снова берутся дрожжи, кольчатые черви, потом опять делаются выводы. При этом часто настолько видна подгонка фактов, что хочется спросить: «А стоило ли вообще проводить эксперименты?» Можно ведь было просто нам сказать: «Я думаю вот так-то».

Не вызывает никаких сомнений, что наше время принадлежит уже не бумаге или телевидению, а именно Интернету. И тут можно найти самое стихийное нагромождение фактов, затем поверхностную их интерпретацию, которые уводят мысль даже образованного слушателя в лабиринты цитирования чужих статей, переведенных Google Translate. Да, сегодня доступность информации в Сети создала уникальную ситуацию в знании о старении. Прочитав несколько статей, многие молодые люди получили формальный повод считать себя компетентными в такой сложной теме. Эта же крайне шаткая ступень воспринимается ими как люк броневика на Площади Революции, с которого они высказывают собственное мнение по самым сложным вопросам науки о старении. Часто для написания таких рассказов и сказок «как жить дольше» используют подход, что на самом-то деле все очень просто. И вот тому газетный пример: «Но живет на свете зверек – это голый землекоп, физиологические особенности которого приводят в изумление геронтологов. Этот грызун отличается исключительно высокой для грызунов продолжительностью жизни. Эти зверьки к старости не бывают физически слабыми или малоподвижными, они не увядают со временем. У голых землекопов никогда не возникает раковых заболеваний, инсультов, инфарктов, диабета и других болезней. А их организм совсем не увядает со временем»[43].

И как вам такое? Странно, что такой зверь вообще умирает. А может и не умирает вовсе? И не хочется ли тут сразу все бросить и бежать изучать только этого дивного и зверька? Фактически единственного. Да, для создания интереса к животному именно как модели для изучения старения подчеркивают удивительные свойства этого вида. Об этом тоже можно говорить долго, но только если не видеть, что природа создает и не такие удивительные конструкции.

Теперь поговорим об уникальности долголетия этого животного. На основании чего же это заявляют? Вот: «Сообщаем о новом рекорде для самого долгоживущего в мире грызуна – самца голого землекопа (Heterocephalus glaber). Когда его поймали в Кении в июле/августе 1974 года, ему был 1 год. Это животное умерло в апреле 2002 года, что свидетельствует о том, что оно прожило более 28 лет. Таким образом, продолжительность жизни этой особи превзошла предыдущий рекорд долголетия для грызунов, который принадлежал дикобразу (Hystrix brachyura), 27 лет и 4 месяца»[44].

Итак, конкретного голого землекопа поймали, перенесли в искусственные условия и сказали: «Вот продолжительность жизни этого вида». Но все не так, ведь это продолжительность жизни в искусственных условиях.

Однако с этой зверушкой не все так просто, и тут хитрость в интригах, причем все они от исследователей, а не от грызуна. Во-первых, когда землекопа сравнивают с мышкой, которая живет лишь пару лет, тем самым подсказывают вашему мозгу уникальную и вызывающую удивление разницу. Нужно сказать, что в семействе грызунов есть множество видов с продолжительностью жизни 5, 10, 15 лет, и я даже слышал о канадском животном, которое живет 25 лет. Например, показано, что палестинская голая крыса, именно так в переводе с английского звучит название этого животного (Spalax ehrenbergi), может прожить 20,2 года. Поэтому говорить об уникальности землекопа могут только несведущие люди. Да, зверушка интересна многим, но уникальной продолжительностью жизни в естественных условиях она не обладает.

Кроме того, как бы предполагается, что все представители вида «голый землекоп» уже прожили эти самые 30 лет, хотя бы и в лаборатории. Но это только предельный показатель продолжительности жизни рекордсмена в искусственных условиях, а большинство животных в колониях ученых сегодня именно молодого возраста. В сравнении с человеком эти животные, которым по 5–7 лет, вообще юные.

Хотя, как я полагаю, ученые будут и далее подкидывать цифры в топку идеи, что землекоп – уникальное животное, и находить факты, что он живет 35, потом 40 лет, но тут нет ничего необычного. Кроме того, важно понимать, что в природе не только землекопы, но и все другие животные погибают гораздо быстрее, чем в лабораторных условиях, причем в основном от внешних причин. И, скорее всего, эти млекопитающие, которые смогут прожить дольше в искусственной среде, в природе погибнут намного раньше от недостатка пищи, вирусных инфекций, драк или нападения хищников.

Поэтому анализ этого вида в неестественных для него условиях жизни ничего нам не дает. Это как с нашим лабораторным двойником, шимпанзе: он явно в условиях зоопарка и лабораторий может прожить намного дольше, чем в природе. И разве это надежный вывод, если мы берем животных, все равно кого, пусть и голого землекопа, затем помещаем в искусственные условия, и говорим: «Смотрите, они не стареют»? Мы просто убрали фактор давления среды.

Кроме того, создается впечатление, что есть какие-то масштабные эксперименты с большими колониями голых землекопов, но взяв одну из статей, вижу, что в испытание включены две размножающиеся самки 7 лет и десять не размножающихся самок и самцов того же возраста[45]. Животных заразили вирусом герпеса, и все они погибли очень быстро.

На момент написания книги в базе PubMed 857 ссылок по запросу Heterocephalus glaber и 2221 по Naked mole-rat[46]. По поисковому запросу «долголетие голого землекопа» 911 ссылок. В РИНЦ тоже 450 публикаций посвящены этому животному. Открываем одну из них[47], где сказано, что голые землекопы (Heterocephalus glaber) в отличие от других млекопитающих не соответствуют закону Гомпертца о возрастной смертности (у взрослых животных не наблюдается увеличения возрастной смертности). Смотрим материал: девять самцов голых землекопов в возрасте 2–5 лет. Название статьи «Окно в чрезвычайное долголетие; циркулирующий метаболический признак голого землекопа, млекопитающего с пренебрежимым старением».

 

Следующий интересный аспект – смертность любых видов в природе: если она не повышается с возрастом, то может быть как одинаково низкой, так и равномерно высокой. А длительность жизни может составлять целые столетия или пару дней. Но старение, отражением которого является рост вероятности смерти с возрастом, отсутствует. Также существуют виды с так называемым негативным старением. У них после достижения зрелости риск смерти с возрастом может даже снижаться.

По признаку «пренебрежимое старение» в базе AnAge[48] указаны 7 видов: европейский протей (102 года), американская болотная черепаха (77 лет), восточная коробчатая черепаха (138 лет), алеутский морской окунь (205 лет), красный морской еж (200 лет), океанический венус (507 лет), сосна остистая межгорная (5062 года). Однако это очень сомнительно, так как смерть от внешних причин ничуть не лучше старения. И что имеют в виду составители базы, когда указывают, что «найдено семь нестареющих видов», непонятно.

Можно еще долго обсуждать нестареющих животных и то, во что наш мозг превращает слово «нестарение», причем в каждой отдельной голове слушателя, но тема книги четко противоположна – она о долголетии совсем другого вида.

Таким образом, «нестареющие» или «пренебрежимо стареющие» животные – это не более чем виды с определенной кривой смертности, когда этот показатель не зависит от возраста. При этом жизнь таких особей может быть не только очень продолжительной или длиннее, чем у других видов, но и короткой. А реально нестареющих животных нет. Природе просто все равно, как особи и их время жизни будут участвовать в эволюции. Она занята тем, что придумывает все новые и новые игры.

«Пренебрежимое старение» – это же очень и очень приятный мне термин с большим грузом положительных эмоций, точно про меня», – вот такое письмо я получил от женщины, которая не хочет стареть. Да, но для врача-гериатра это звучит задорно и забавно, но не более. Людям нужны положительные эмоции, ученые же хорошо это понимают и играют на этом. А по сути, если такому якобы «нестареющему» организму дать нагрузку, например заставить бежать, посмотреть на время заживления раны, сроки выздоровления от инфекционных болезней, то всегда можно разделить животных на молодых и старых.

Это отражает явную проблему в самих исследованиях на модельных животных, когда в работу закладывается системная ошибка мышления самого человека, сформулированная на другом виде, с иной продолжительностью жизни, со сбитой эволюцией механизмов продолжительности жизни, а поэтому и другими механизмами старения.

Стареют ли половые клетки?

В науке о старении только часть знаний. Остальное занимает вера. И тут важны именно их пропорции.


Временами говорят, что, несмотря на то, что человек стареет, у него есть зародышевая линия, которая не стареет и передается из поколения в поколение. Такое можно иногда услышать и от биологов, причем даже с очень узнаваемыми именами. Однако давайте разбираться, как в организме могут быть клетки, хоть и половые, которые не стареют. Немецкий эволюционист Август Вейсман создал теорию, согласно которой наследственные признаки сохраняются и передаются из поколения в поколение через нестареющую зародышевую плазму[49]. Он говорил, что у многоклеточных организмов полный объем зародышевой плазмы получают только половые клетки. Согласно взглядам ученого она находится в хроматине ядра клетки. А роль самих организмов состоит лишь в том, чтобы обеспечить ее передачу потомкам. Вроде бы все четко и понятно.

Итак, половые клетки человека называются ооцитами и сперматозоидами. И тут нужно сказать, что в мужском и женском организме в этом отношении все происходит по-разному. После рождения девочки ооциты не образуются, их популяция достигает количественного пика к 5-месячному возрасту эмбриона. Затем начинается систематическое падение их численности, и к рождению остается только около 1 млн клеток. Но процесс потери ооцитов не останавливается, он продолжается, и к половой зрелости девушка подойдет с 400 тыс. ооцитов. А к завершению репродуктивного периода их останется в организме лишь около тысячи. Фактически это ноль. Для объяснения такого значимого процесса существует гипотеза нехватки ростовых факторов для их выживания и версия удаления ошибок в ходе кроссинговера[50], чтобы их не было возможно передать следующему поколению. Не исключено, что гибели могут избежать только ооциты с достаточно высокой плотностью рецепторов к ростовым факторам. И вот различие: у мужчины сперматогенез, или образование половых клеток, происходит в течение всей его жизни, а процесс, подобный потере ооцитов, просто отсутствует.

Теория Харриса и Кэрол Бернстайнов гласит, что бессмертие половых клеток обеспечивается репарацией всех накопившихся повреждений ДНК в процессе мейоза[51]. Мейоз – это последнее двукратное деление с уменьшением хромосом в два раза. Он возможен только в клетках с парным, или четным, количеством хромосом, и состоит из двух фаз: редукционной и эвакуационной.

Первому делению мейоза предшествует очень длительная профаза: если в мужском гаметогенезе она продолжается 30 дней, то в женском организме длится десятки лет. В это время гомологичные хромосомы сближаются друг с другом и в таком состоянии пребывают почти все время, то есть в профазе первого деления мейоза хромосомы удваиваются. При этом резко активируются ферменты, разрезающие и сшивающие нити ДНК.

В яйцеклетке второе мейотическое деление (на стадии ооцита II – развития женской половой клетки) не может происходить самостоятельно без помощи сперматозоида, так как клетка потеряла свои центриоли, специальные тельца, участвующие в делении. Поэтому требуется обязательное оплодотворение, чтобы сперматозоид привнес свои центриоли. В результате этого происходит второе деление мейоза и образуется зигота.

В мейозе гомологичные хромосомы конъюгируют друг с другом и вступают в кроссинговер. Такая необходимость увеличивает генетическую вариабельность вида. Действительно, «папины» и «мамины» наследственные признаки, до сих пор распределенные в каждой паре гомологичных хромосом, после кроссинговера оказываются перемешанными. Этот процесс напоминает репарацию генов, при которой, вырезая поврежденные участки, нужно разрывать и сшивать нити ДНК. То есть одновременно с кроссинговером, вероятно, осуществляется и суперрепарация генома. Если же что-то не получилось, как должно, то в клетке срабатывают датчики контроля состояния собственной ДНК и начинается процесс самоубийства, или, другими словами, апоптоза.

Первое деление заканчивается расхождением гомологичных хромосом по двум дочерним клеткам. Второе проходит быстро, без удвоения ДНК, и приводит к расхождению хроматид каждой хромосомы по двум дочерним клеткам, в результате чего последние оказываются гаплоидными, то есть содержащими одинарный набор хромосом.

В процессе мейоза получается четыре итоговые клетки: одна гаплоидная и три редукционных тельца. Значение этого процесса в том, что у организмов, размножающихся половым путем, автоматически предотвращается удвоение числа хромосом при произведении потомства. Мейоз создает возможность для возникновения новых генетических комбинаций и ограничивает размножение путем внутривидового скрещивания.

Процессы, которые восстанавливают состояние генома, конъюгация гомологичных хромосом, кроссинговер или что-то другое и пока неизвестное, могут быть полезны для запуска механизмов «долгой жизни», и именно здесь нужны модельные опыты на животных.

Самый известный в мире российский биогеронтолог А. М. Оловников ответил на мой вопрос к нему, стареет ли половая клетка, так: «Да, стареет. Вот что известно из разных работ, например по теломерам. Твердо установлено, что теломеры в сперматозоидах пожилого мужчины длиннее, чем у молодого[52]. Это вызвано «дисбалансом» белков (теломеразы и ряда других факторов), следящих за длиной теломер. Вероятная причина скрывается не внутри половой клетки (так как сопутствующих этому мутаций не было обнаружено), а заключена в среде стареющего носителя этих половых клеток. Поэтому есть основания заключить, что старение пожилого организма ведет к этому дисбалансу эпигенетически, то есть через различные модификации (ацетилирование гистонов, метилирование ДНК и тому подобное). Детали еще предстоит уточнять, но принципиальный факт изменений в сперматозоидах с возрастом (даже структурных изменениях, поскольку теломеры – это структуры) установлен».

Таким образом, на вопрос, стареют ли половые клетки, стоит ответить четко: «Да». И это означает, что нестареющих клеток в организме просто нет. Выяснение механизмов суперрепарации ДНК, которая происходит во время мейоза, возможно, решит часть проблем старения человека.

Интересная связь может быть между ростом продолжительности жизни человека как вида и более поздним зачатием. Давайте поразмышляем: сегодня среди мужчин зрелого возраста (50–55 лет) заметна тенденция рожать детей во втором или третьем браке. И женщины сейчас чаще производят ребенка на свет в более взрослом состоянии, чем еще полвека назад. Сегодня, когда давление среды в виде голода и особо опасных инфекций фактически равно нулю, это дает возможность самым здоровым из людей в возрасте, а таких очень много, завести здоровое потомство. При этом длина теломер сперматозоидов у мужчин в возрасте, как мы знаем, больше, чем у более молодых. Если это свойство более длинных защитных колпачков (а это структурное образование с временными задачами) передастся их потомству, то мы должны увидеть много людей, которые живут дольше.

Почему загадочная история Бенджамина Баттона невозможна?

Для понимания механизмов старения очень важно уметь не только слушать, но и слышать природу человека. Именно оно даст ключ к активному и здоровому долголетию.


Если, как считают сегодня геронтологи, в организме стареют все клетки, включая половые, то как тогда всегда рождается организм с нулевым возрастом и почему история, когда человек появляется на свет старым, просто невозможна. Возьмем как пример фильм 2008 года «Загадочная история Бенджамина Баттона»: главный герой родился стариком и проживает жизнь в обратном порядке. Удивительная история. Чистый Голливуд.

 

Так почему мы не рождаемся хоть на каплю старыми даже в том случае, если наш отец уже пожилой? И почему, когда у человека стареют все клетки, даже от самых старых родителей рождается младенец без малейших признаков возрастных изменений? И, таким образом, несмотря на возможные генетические болезни, которые могут возникнуть при рождении от «старых» родителей, он всегда рождается только с предсказуемо обнуленным возрастом.

Выдающийся геронтолог, один из основателей секции геронтологии МОИП при МГУ им. М. В. Ломоносова, Жорес Медведев опубликовал в 1981 году работу On the immortality of the germ line: genetic and biochemical mechanisms. A review (О бессмертии зародышевой линии: генетические и биохимические механизмы. Обзор)[53]. В этой статье рассматриваются механизмы «бессмертия» половых клеток, которые сводятся в основном к существованию целого ряда препятствий, фактически большого барьерного рифа, не позволяющего потомству появиться из «старых» половых клеток. Поэтому дети всегда и рождаются только с нулевым возрастом, то есть с запущенным с нуля механизмом старения.

Давайте разберемся. Для передачи генетической информации от поколения к поколению существуют специальные эмбриональные клетки. Они отделяются от прочих на достаточно ранних стадиях развития плода до формирования половых желез, куда затем и мигрируют. Из них и образуются гаметы, больше известные нам как сперматозоиды и яйцеклетки.

Но эти клетки должны сначала созреть. Это называют гаметогенезом, термином, обозначающим сумму процессов, которые приводят к созреванию половых клеток. И если яйцеклетки образуются уже в эмбриогенезе и затем находятся только в профазе I мейоза, то процесс сперматогенеза не останавливается в течение всей жизни мужчины.

У видов, для которых характерен жизненный цикл с гаметической редукцией, мейоз тесно связан с гаметогенезом, однако нельзя говорить о полной идентичности этих процессов. Так, зрелый сперматозоид, готовый к оплодотворению, формируется лишь по завершении мейоза, а ооцит созревает до его окончания. Более того, слияние гамет происходит до завершения мейоза в ооците.

Основой для успешного гаметогенеза служит мейоз, или редукционное деление клетки с уменьшением числа хромосом вдвое. Это основное условие для полового размножения и одновременно сохранения числа хромосом. В результате получаются гаплоидные гаметы, и только слияние ооцита и сперматозоида восстанавливает число хромосом до диплоидного в зиготе. Последующее деление клеток происходит только митотическим путем, что позволяет поддерживать обязательную диплоидность.

Гипотез старения, связанных с мейозом тем или иным образом, довольно много. Именно в этом процессе можно найти ответ на вопрос, почему мы рождаемся молодыми. Но не только в нем.

Заведующий сектором эволюционной цитогеронтологии биологического факультета МГУ им. М. В. Ломоносова Александр Николаевич Хохлов сказал мне, что существует множество механизмов, которые обеспечивают то, что из ооцитов и сперматозоидов выбираются самые соответствующие требованиям «ювенильности зародышевой плазмы». Ведь по существу любой живой организм предназначен для эффективного сохранения содержащегося в нем генетического материала с последующим распространением своих копий в окружающей среде. Тут стоят две важные задачи, причем разделить их сложно. Поэтому в процессе эволюции человека механизмы для выполнения этих целей отточились до совершенства, как, впрочем, и других видов на планете. Именно поэтому репликация ДНК, несущей возрастные повреждения, во многих случаях становится невозможной.

При сперматогенезе «сбрасываются» почти все имеющиеся повреждения, а процесс оплодотворения происходит таким образом, что даже у минимально дефектных сперматозоидов нет шансов на успех. В оогенезе происходит так же, хотя эти слова тут не очень уместны и говорят только об удалении любых ооцитов с «испорченным» геномом. Для этого существует механизм атрезии или гибели большей части фолликулов[54] до окончания их роста. Ей подвергаются фолликулы либо с генетически неполноценными ооцитами, либо с теми, у которых нарушена последовательность прохождения профазы мейоза. В яичниках женщины много больших фолликулов погибает и не достигает овуляции. Также созревшая яйцеклетка очень быстро перезревает и уже через несколько часов теряет способность к оплодотворению. Возможно, что именно постоянная гибель ооцитов в эмбриогенезе и на протяжении жизни вплоть до самого репродуктивного старения и есть основное средство отбора «на ювенильность».

В процессе гаметогенеза и раннего эмбрионального развития происходит полная реконструкция ядерного аппарата транскрипции. Если «проблемное» оплодотворение все же случилось, то развитие прекращается и происходит лизис образовавшейся структуры. При возникновении зиготы из половых клеток даже с минимальными аномалиями нарушается процесс эмбрионального развития или появляется нежизнеспособное потомство[55].

Интересный факт: поздней осенью 2020 года родилась девочка из замороженного эмбриона, и это не первый раз, когда подобное случилось. Но вот то, что эмбрион хранился 27 лет, просто удивительно, так как именно это произошло впервые. Как объяснили эмбриологи, при экстракорпоральном оплодотворении (ЭКО) полученный эмбрион можно заморозить, хранить, а использовать намного позже. И в этом случае, хотя и прошло почти три десятка лет, ребенок все равно родился с обнуленным возрастом. Никаких признаков 27 лет календарного времени хранения не осталось. Поэтому этот метод можно использовать для передачи неизмененной генетической информации человека через века и даже тысячелетия.

Геронтологи должны более подробно изучить мейоз. Именно в нем видны механизмы суперрепарации ДНК, а это важная тема в вопросе долголетия человека.

42См. страницу автора книги на Facebook. https://www.facebook.com/Novoselov ValeryMichaylovich.
43Петербургский гериатр рассказала, когда наступает старость / [Электронный ресурс]. SpbDnevnik, 2018. URL: https://spbdnevnik.ru/news/2018-10-05/peterburgskiy-geriatr-rasskazala-kogda-nastupaet-starost.
44Buffenstein, R., Jarvis, J. The naked mole rat-a new record for the oldest living rodent // Sci Aging Knowledge Environ. 2002, 29 May. № 21.
45Artwohl, J., Ball-Kell, S., Valyi-Nagy, T., P Wilson, S., Lu, Y., J Park, T. Extreme Susceptibility of African Naked Mole Rats (Heterocephalus glaber) to Experimental Infection with Herpes Simplex Virus Type 1 // Comp Med. 2009, Feb. № 59 (1). P. 83–90.
46В переводе с англ. «голый землекоп». – Примеч. ред.
47Lewis, K., Rubinstein, N., Buffenstein, R. A window into extreme longevity; the circulating metabolomic signature of the naked mole-rat, a mammal that shows negligible senescence // GeroScience. 2018, Apr. № 40 (2). P. 105–121.
48База AnAge / [Электронный ресурс] URL: http://www.genomics.senescence.info/species/nonaging.php5. Петербургский гериатр рассказала, когда наступает старость / [Электронный ресурс]. SpbDnevnik, 2018. URL: https://spbdnevnik.ru/news/2018-10-05/peterburgskiy-geriatr-rasskazala-kogda-nastupaet-starost.
49https://bigenc.ru/biology/text/1903985.
50Кроссинговер – процесс обмена участками гомологичных хромосом. – Примеч. ред.
51Medvedev, Z. On the immortality of the germ line: genetic and biochemical mechanism // Mech Ageing Dev. 1981, Dec. 17 (4): 331–59.
52Обратите внимание, именно так, это не ошибка. – Примеч. авт.
53Medvedev, Z. On the immortality of the germ line: genetic and biochemical mechanism // Mech Ageing Dev. 1981, Dec. 17 (4): 331–59.
54Фолликул яичника – структурный компонент яичника, состоящий из яйцеклетки, окруженной слоем эпителиальных клеток и двумя слоями соединительной ткани. – Примеч. ред.
55Хохлов, А. Половые клетки и старение. Памяти Ж. А. Медведева / Лекция // Клиническая геронтология. 2019. С. 11–12.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24 
Рейтинг@Mail.ru