bannerbannerbanner
полная версияСпециальная теория относительности – гениальное озарение или математическая фантазия?

Сергей Александрович Гурин
Специальная теория относительности – гениальное озарение или математическая фантазия?

Полная версия

КВАНТОВАЯ НЕИСКЛЮЧИТЕЛЬНОСТЬ.

Возьмем туннельный эффект преодоления потенциального энергетического барьера частицами, не обладающими для этого необходимой энергией. В настоящее время он объясняется исключительно с точки зрения квантовой механики. Краткий смысл такой: из-за вероятностной природы квантовых эффектов при решении квантовых уравнений движения приближающихся к барьеру частиц, для некоторых из них появляется вероятность нахождения с той стороны барьера. Как я понимаю, туннельный эффект наблюдается не на одной неподвижной частице, а если к барьеру приближается множество частиц. Тогда почему исключается самое простое объяснение (даже упоминания о нем не встречал), что задние добавляют передним энергию и тем самым проталкивают их сквозь барьер.

Принцип неопределённости. Но тут-то что нового и принципиально относящегося исключительно к квантовому миру? Попробуйте, например, одновременно измерить скорость и размер двигающейся автомашины. Да не получиться. Даже однозначно положение в пространстве определить не получиться, так как машина – это не материальная точка, а реальный объект имеющий реальный, а не «пренебрежительно малый» размер.

А уж в микромире все измерения схожи с определением скорости, размера и состава той же автомашины по результатам удара её в бетонную стену, строение и состав, которой также до измерения не известны. Или даже в другую автомашину. О какой точности и определенности вообще можно говорить.

Теперь о самом будоражащем умы и не только ученых – квантовой суперпозиции, или возможности существования квантовых частиц во всех возможных состояниях до их наблюдения. И знаменитая иллюстрация – кот Шредингера. Бедный кот посажен в ящик с бутылочкой яда, которая разобьется если в изотопе, находящемся в этом же ящике, произойдет распад. Суперпозиция для животного объясняется тем, что, не открыв ящик, узнать его состояние невозможно и, соответственно, кот может находится во всех возможных состояниях, а открытием ящика суперпозиция сводится к единственному состоянию. То есть состояние кота определяется его наблюдением. Но это же просто бред. Здесь снова та же «относительность одновременности» только вид сбоку: суперпозицию информированности о состоянии кота выдают за суперпозицию его фактического состояния. Добавление в схему индикатора состояния кота, целостности бутылочки или распада изотопа напрочь уничтожит всю суперпозицию (поэтому его в изначальной схеме, наверное, и нет). Так и для частиц – суперпозиция пресловутой волновой функции это всего лишь отсутствие надлежащего индикатора. А имеющиеся сейчас инструменты и способы наблюдения просто приводят в большинстве случаев к уничтожению самой частицы в ходе определения её состояния. Значит получается, что если определили, то в другое состояние частица уже не уйдет, а до этого она могла находиться во всех возможных состояниях. А расхождения получаемых результатов, которые в таких условиях неизбежны, объясняют «вероятностным» характером квантовых эффектов.

Ну да ладно, вернемся к свету.

МАГНИТНЫЙ ПАРАДОКС.

Определение его природы как потока частиц, поставило вопрос, а где еще возможно обнаружить проявления их существования.

И решение пришло при рассмотрении парадокса Фарадея с металлическим диском и дисковым магнитом с позиции отсутствия СТО, которая и используется сейчас для его объяснения.

Краткое описание сути парадокса.

Медный диск расположен на одной оси с цилиндрическим магнитом. Между осью и краем диска измеряется наличие разности потенциалов. При вращении диска и неподвижном магните между краем диска и осью (далее центром) создавалась разность потенциалов. Что согласовывалось с представлениями Фарадея (проводник – медный диск пересекал магнитные линии и создавалась электро-движущая сила), но при вращении диска вместе с магнитом снова создавалась разность потенциалов, что уже не соответствовало (Фарадей был уверен, что магнитные линии должны были быть связаны с магнитом и вращаться с ним и, соответственно, с диском, т.е. диск их пересекать не мог), потом Фарадей убрал диск и разность потенциалов стал измерять между центром и краем магнита и при вращении магнита все равно появлялась электро-движущая сила (ЭДС). Сам Фарадей решил, что ЭДС наводиться в проводах цепи, которые пересекают магнитные линии, связанные с вращающимся магнитом. И это объяснение в целом принято и сейчас, только туда еще добавили мудрёность СТО.

Однако при попытках повторения данного опыта, мною была замечена одна особенность, которая не соответствовала представлениям о магнетизме полученным в школе. А именно: согласно тем представлениям, магнитное поле в магнитах создается совокупностью микроструктурных магнитных полей атомов материала, которые ориентированы в одну сторону. Этому объяснению вполне соответствует то, что магнитные линии должны быть связаны с внутренней структурой магнита и при вращении дискового магнита должны вращаться вместе с ним.

Но тогда, если заменить медный диск стальным (а у меня как раз медного и не было, ввиду спонтанности вообще всей данной работы и проведения опытов с использованием того, что есть под рукой), вращающийся магнит и вращающиеся вместе с ним «магнитные линии» должны увлечь стальной диск при вращении. Однако, на практике при вращении магнита (на фото № 6 кольцевой магнит под стальным диском, и диск и магнит на подшипниках для свободного вращения) диск оставался НЕПОДВИЖНЫМ!


Фото № 6. Кольцевой магнит под стальным диском.

Дальше я поставил на одну ось на подшипниках для свободного вращения уже два кольцевых магнита (фото № 7) – у каждого ведь должны быть свои магнитные линии, и уж друг друга то они должны «ухватить» за них. Но не тут-то было, они свободно могли вращаться вообще в разных направлениях, никак друг на друга не влияя!!!!!



Фото № 7. Два кольцевых магнита друг над другом, расположенные так, чтобы притягиваться.

Стало уже совсем интересно, и небольшой дисковый магнит помог все расставить на места. Как выяснилось магнитное поле в магнитах создают не микротоки, магнитные моменты которых взаимно ориентированы. Магнитные силы в магните созданы замкнутыми МАКРОТОКАМИ внутри его структуры. У дискового магнита – это замкнутый круговой ток по внешнему краю (фото № 8), ток для наглядности обозначен красной круговой линией со стрелками (здесь и далее выбор направления абсолютно произвольный, просто для наглядности).



Фото № 8. Дисковый магнит. Стрелки показывают направление тока, создающего магнитное поле. Направление стрелок выбрано случайно, для наглядности.

В имевшихся кольцевых магнитах – это два кольцевых тока имеющих противоположные направления (фото № 9), текущих по внешнему и внутреннему контурам магнита внутри структуры вещества (повторюсь, направления стрелок выбраны только из соображений наглядности) и никак к ней не привязаны, приближенно как воздух внутри камеры колеса если убрать трение воздуха и стенок камеры.



Фото № 9. В кольцевых магнитах магнитное поле создается противоположными токами.

Это явно видно по поведению маленького дискового магнита при взаимодействии с кольцевым (фото №№ 10-12).



Фото № 10.



Фото № 11.



Фото № 12.

Вот еще фото разных магнитов и их взаимодействий.



Фото № 13.



Фото № 14.



Фото № 15.



Фото № 16.

Еще иллюстрация кругового тока дисковых магнитов. Только в центральной области большого диска маленький магнит оставался на месте (фото № 17), но стоило немного сместить его как он сразу притягивался своим внешним краем к внешнему краю большого (фото №№ 18-20).



Фото № 17.



Фото № 18.



Фото № 19.



Фото № 20.

Даже в прямоугольных магнитах, которые были в наличии, это замкнутый ток по внешнему контуру (фото № 21).



Фото № 21.

Один из дисковых магнитов сломался пополам и токи в половинках замкнулись по излому, при этом направления сохранились. Если совмещать половинки так, как они были в целом магните, они отталкиваются (фото № 22 слева), но если перевернуть одну «вверх ногами» то они притянуться (фото № 22 права).



Фото № 22.

Фотографии взаимодействия магнитов явно показывают, что макротоки в них, в точности подчиняются закону Ампера – направленные в одном направлении притягиваются, а в разных отталкиваются.

 

А вот еще одно подтверждение, что макроток не привязан к структуре магнита. Маленький дисковый магнит располагается ровно посередине торца одиночного большего дискового магнита (фото № 23).



Фото № 23.

Токи в магнитах равномерно распределились по толщине (фото № 24).



Фото № 24.

Затем совместил два дисковых магнита, так чтобы они отталкивались, а значит токи в них текли в разных направлениях. Чтобы они не разлетелись друг от друга, зажал их прищепкой. Теперь токи в больших магнитах, «растолкав» друг друга, сместились к противоположным поверхностям дисков. Что на фото явно демонстрируется маленьким магнитом, который притягивается к внешним областям торцов (фото №№ 25, 26).



Фото № 25.



Фото № 26.

На фото № 27, магниты совмещены так, что они притягиваются, то есть токи текут в одном направлении. Токи сместились к друг другу и маленький магнит теперь притягивается к внутренним областям торцов.



Фото № 27.

Если бы магнитное поле создавалось микроструктурными токами, которые были бы связаны со структурой, то смещения не было бы, и маленький магнит притягивался бы, как и раньше, к серединам торцов больших.

И конечно надо было смоделировать ситуацию с металлическим диском и микроструктурной природой магнитных сил. Для этого над металлическим диском расположен другой диск, на котором размещены прямоугольные магниты имитирующие микроструктурные токи отдельных атомов (фото № 28). Если вращать диск с магнитами, то нижний диск также вращается в том же направлении.



Фото № 28. Несколько небольших магнитов на верхнем диске имитируют микроструктурное магнитное поле.

А вот опилки и дисковый магнит, взаимодействующие через дно пластикового стакана. Опилки собрались как в магнитном поле кругового постоянного тока (фото №№ 29, 30).



Фото № 29.



Фото № 30.

Конечно, для кого-то это может и не является чем-то новым, но меня это немного озадачило. Учили-то не так!

И теперь стало понятно почему кольцевые магниты не утягивали в своем вращении стальной диск и друг друга. Да потому, что макроток в структуре никак не менял своего положения если структура вращалась в плоскости его течения вокруг центра контура. Магнитное поле этого тока оставалось НЕПОДВИЖНЫМ относительно оси вращения!!! Что не удивительно. Если все что утверждали про электрический ток правда, то скорость зарядов должна быть почти световой, а так раскрутить магнит я просто не в состоянии. Да и при значительных скоростях вращения уже наверное воздух, увлекаемый одним вращающимся магнитом, заставит вращаться другой.

Тогда и парадокс Фарадея объясняется просто – силой Лоренца. Во всех случаях. Когда вращается диск или диск с магнитом, свободные заряды диска перемещаются в магнитном поле. Из-за силы Лоренца они скапливаются либо в центре, либо на краю диска, создавая тем самым разность потенциалов между его центром и краем. При вращении только магнита относительно неподвижного диска, поле магнита не перемещается, соответственно и заряды неподвижного диска в магнитном поле не двигаются, а значит на них сила Лоренца не действует. В этом случае между краем и центром диска разности потенциалов нет. А вот если при вращении самого магнита напряжение измерять между его центром и краем, то оно должно быть и Фарадей его и обнаружил. Но вывод сделал из собственных убеждений. А в действительности наличие разности потенциалов объясняется тем, что свободные заряды уже в самом магните, вращаясь вместе со структурой магнита в поле макротока магнита, остающимся неподвижным, испытывают туже силу Лоренца и также скапливаются либо во внешней, либо во внутренней области, но уже магнита и, соответственно, разность потенциалов создается уже в самом магните. И парадокса нет и никакой необходимости приплетать СТО нет.

Не смог остановиться и продолжил магнитные опыты.

При повороте магнитов так, чтобы токи на взаимодействующих сторонах стали перпендикулярными, магниты практически не взаимодействуют (фото № 31).



Фото № 31. При повороте на 90 градусов взаимодействие магнитов практически не ощущается.

Дальше предлагаю свои предположения о природе магнитных сил. Так как суть этой природы наука не объясняет, то с полным правом могу внести и свою толику в коллекцию предположений.

Наблюдение за поведением магнитов навело меня на мысли о том, что так называемое магнитное поле – это вихри каких-то частиц вокруг токов, пусть они и будут фотонами. И тогда все сходиться. Рассмотрим (для упрощения объяснения) одинаковые по характеристикам потоки (рисунок № 19).



Рисунок № 15. Взаимодействие параллельных токов.

Вокруг двигающихся в одном направлении потоков зарядов, вихри закручиваются так, что во внутреннем пространстве между потоками они направлены в разные стороны, соответственно суммарная скорость протекания струй фотонов между зарядами в два раза больше. Да, в два раза увеличивается и плотность потока, но вспомним, что статическое давление в струе обратно пропорционально квадрату ее скорости. Соответственно, если скорость протекания и плотность возросли в два раза, то статическое давление в пространстве между потоками упадет в два раза по сравнению с давлением снаружи и потоки станут прижиматься друг к другу. Если потоки направлены навстречу друг другу, то между ними фотонные вихри движутся в одном направлении, соответственно скорость струй не меняется. а плотность возрастает в два раза т.е. давление во внутреннем пространстве тоже возрастает в два раза, и потоки отталкиваются. А при сильном приближении двух сонаправленных токов их вихри вообще могут объединиться.

Соответственно, если потоки движутся в перпендикулярных направлениях (рисунок № 20) сумма скоростей вихрей дает увеличение их суммарной скорости в √2 раз, а плотность возрастает в два раза. В результате статическое давление во внутреннем пространстве между потоками не меняется, и потоки не притягиваются и не отталкиваются.



Рисунок № 20. Взаимодействие перпендикулярных токов.

Притяжение магнита к стальному предмету также довольно просто объяснить на вихревой основе. Только в этом случае, в дело вступают уже микротоки структуры металла. При приближении магнита микротоки переориентируются, как маленький магнит в поле большого, так что вихри вокруг этих токов ближе к магниту становятся противонаправленными с вихрями вокруг макротока магнита. В этой области создается пониженное давление и микротоки начинают втягиваться в поток макротока. Так как макроток и микротоки не могут выйти из структуры материалов они утягивают за собой последнюю. Таким образом на макроуровне наблюдается притяжение металла и магнита.

Переориентацией микротоков вполне объясняется возникновение сопротивления электрическому току (ЭТ). Вихри вокруг ЭТ в проводнике переориентируют его микротоки, так что микротоки и ЭТ пытаются притянуться. Но микротоки не могут отделиться от структуры проводника поэтому они начинают тормозить движущиеся заряды ЭТ. При этом отдельные фотоны вихрей ЭТ втягиваются в вихри микротоков увеличивая их насыщенность, что приводит к увеличению внутренней энергии проводника и его нагреву.

В различных материалах подвижность микротоков и плотность их вихрей различна что и объясняет разность сопротивлений.

При уменьшении температуры подвижность микротоков в плане переориентации уменьшается, как уменьшается и насыщенность вихрей из-за потери фотонов. При определенной температуре микротоки не только взаимоориентируются, так что вихри становятся перпендикулярными к вихрям движущихся зарядов, но и теряют способность переориентации, сама поверхность вихрей уплотняется и становиться более гладкой. В результате этого, при прохождении ЭТ не оказывается тормозящего действия, то есть сопротивление исчезает и появляется эффект сверхпроводимости (рисунок № 21).



Рисунок № 21. Схематичное представление сверхпроводимости.

И не надо выдумывать КОМПТОНОВСКИЕ пары электронов. Напомню, что это электроны, которые двигаются в разные стороны и за счет втягивания в область между ними положительных ионов структуры проводника притягиваются друг к другу и создают объект с целым спином (одна из квантовых характеристик, у одиночного электрона она дробная). С точки зрения квантовой механики целый спин позволяет всем электронам в электронном газе находится в одном состоянии. Это, якобы, и порождает сверхтекучесть электронного газа и сверхпроводимость.

Но разве сверхпроводимость имеет отношение к электронному газу, который передает электрический ток в проводнике? Существование высокотемпературных сверхпроводников однозначно доказывает, что сверхпроводимость определяется только характеристиками структуры проводника. Если бы сверхпроводимость определялась свойствами электронного газа, то она появлялась бы всегда при одной температуре. Еще незадача – а как, для поддержания явления, мгновенно охлаждать новый электронный газ, поступающий в сверхпроводник из источника. Да и каким образом будут существовать КОМПТОНОВСКИЕ пары в ЭТ, который по определению есть направленное движение электрических зарядов В ОДНОМ НАПРАВЛЕНИИ?! Кроме того, чтобы ионы структуры проводника имели возможность втянуться в область между электронами они должны быть очень подвижны, а ведь по общему представлению с уменьшением температуры материала его частицы должны становиться все менее и менее подвижны! Да и сверхтекучесть наверняка будет только мешать движению электронов в одном направлении, электронный газ ведь будет постоянно расползаться по всем, так сказать, щелям структуры сверхпроводника.

Еще вспомним объяснение левитации магнита над сверхпроводником на образе самоотражения магнитного поля. Якобы магнит, при приближении к сверхпроводнику, как бы видит сам себя и отталкивается от своего отражения. Но кто-нибудь пытался поставить одинаковые магниты друг над другом так чтобы они отталкивались? Верхний магнит совершенно не «хочет» держаться в равновесии над своим визави, от слова совсем (извините за простоту оборота).

С точки зрения вихревых потоков все проще. Из-за специфической ориентации микротоков в структуре сверхпроводника, их вихри в равном количестве направлены как в одном направлении с вихрями магнита, так и в противоположном (рисунок № 22).



Рисунок № 22. Ориентация вихрей макротока магнита и микротоков сверхпроводника.

Так как в сверхпроводнике способность к переориентации у микротоков отсутствует, то магнит не может их переориентировать под себя, как при обычных условиях, соответственно он в равной степени отталкивается и притягивается, но сила гравитации создает дополнительное притяжение, кроме того уплотнившаяся поверхность вихрей сверхпроводника не пропускает как раньше вихри магнита. На определенном расстоянии между магнитом и сверхпроводником плотность фотонов в области смешения вихрей становиться больше чем во внешней области до такой степени, что её разность позволяет уравновесить силу гравитации.

И чуть не забыл, вихревое объяснение силы Лоренца (думаю по картинке будет все понятно).



Рисунок № 23. Схема возникновения силы Лоренца.

Немного отступлю от электромагнитных размышлений (но как все оказывается связано).

Рассуждения о фотонных вихрях, напомнили мне о том, как объясняли появление подъемной силы крыла (в свое время я прекрасно понял существующее объяснение, но что-то там опять было не так).

 

Вспомним вкратце существующее объяснение: подъемная сила создается из-за разности статических давлений в потоках воздуха над и под крылом, которые движутся с разной скоростью – над крылом быстрее под медленнее. Такое объяснение подтверждается опытами в аэродинамических трубах. Все бы хорошо, но…

В трубе да, все справедливо – есть поток соблюдаются все законы динамики газов, есть статическое и динамическое давление. Но с чего решили, что данная схема равна движению крыла в среде!? Снова применение принципа относительности движения. Что поток мимо крыла, что крыло мимо потока. Да вот только и здесь справедливость чисто математическая. А с физической точки зрения сравнивать их нельзя.

Рейтинг@Mail.ru