bannerbannerbanner
полная версияСпециальная теория относительности – гениальное озарение или математическая фантазия?

Сергей Александрович Гурин
Специальная теория относительности – гениальное озарение или математическая фантазия?

Полная версия

ЛАБОРАТОРИЯ ВООБРАЖЕНИЯ.

Догоняем светв одном с ним направлении, и при достижении скорости света, свет перестанет двигаться вперед, но будет совершать колебательные движения. Что по словам самого экспериментатора – Эйнштейна «просто немыслимо». И это уже зародило у него повод для размышлений (опять же, по его словам).

Эксперимент с поездом и платформой. На платформе стоит смотритель, мимо платформы движется вагон, в середине которого находится пассажир. В момент, когда пассажир поравняется со смотрителем, в концы вагона попадают молнии. До смотрителя свет от ударов дойдет одновременно, а к пассажиру, двигающемуся вперед, свет от передней молнии дойдет быстрее чем от задней (где-то уже это было), а значит события для пассажира не одновременны. В этом опыте Эйнштейн определяет относительность одновременности событий при переходе из неподвижной системы отсчета в движущуюся.

Пытаемся передать сигнал со сверхсветовой скоростью. Сигнал будет передаваться по ленте, сделанной из материала, по которому сигналы могут распространяться с какой угодно скоростью. Отправитель и адресат находятся у ленты, причем лента движется от получателя к отправителю, т.е. противоположно движению сигнала. Тогда скорость передачи сигнала будет равна разнице скоростей распространения сигнала по ленте и самой ленты. Но здесь уже сразу при расчете этой разницы используется релятивистская поправка. При условии, что скорость сигнала по ленте и скорость ленты могут быть любой, то возможно решение с отрицательным временем передачи сигнала, т.е. получатель получит сигнал раньше, чем отправитель его отправит. Это противоречит принципу причинности. Результат – ДВИГАТЬСЯ СО СВЕРХСВЕТОВОЙ СКОРОСТЬЮ НЕВОЗМОЖНО.

Убежденность в абсолютности скорости света и постоянстве её для всех систем отсчета, а также появившаяся в преобразованиях Лоренца-Пуанкаре инвариантность уравнений Максвелла, позволили постулировать равноправие всех систем отсчета, существование только относительного движения, отсутствие какого-то главного и абсолютного пространства и, как следствие, утверждение, что того самого светоносного эфира не существует (сразу оговорюсь статья НЕ ПРО эфир).

Вот суть главных утверждений СТО:

Все инерциальные системы отсчета равноправны между собой, не существует какого-либо абсолютного пространства.

Скорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга, не зависит от скорости источника и является максимальной скоростью движения.

Все, заканчиваю утомлять читателя историей и перехожу собственно к изложению своих рассуждений.

ВОПРОСЫ, ВОПРОСЫ.

И сразу же в «лоб». Утверждение об отсутствии абсолютного пространства разве не вступает в противоречие с утверждением об инвариантности, по отношению ко всем системам отсчета, скорости света. Если свет ведет себя одинаково и независимо от переходов между системами отсчета, то он и является той абсолютностью и собственная система отсчета света является как раз тем самым абсолютным пространством, той самой приоритетной системой отсчета по отношению ко всем остальным, отсутствие существования которой и постулируется.

Кроме того, в процессе изучения связанных вопросов, я пришел к выводу, что проблемы появились гораздо раньше даже предпосылок к разработке СТО.

Корень всего кроется в одной незначительной на первый взгляд и по этому упущенной особенности инерциальной системы отсчета как физического понятия. Не принятие этой особенности во внимание привело в дальнейшем к искажению самого понятия СИСТЕМЫ ОТСЧЕТА.

Но об этом позднее, хотя думаю, что в ходе дальнейшего ознакомления с материалом читатели и сами поймут, о чем идет речь.

По не понятным причинам у меня возникло стойкое ощущение несоответствия утверждения о том, что свет ведет себя одинаково и не зависимо от системы отсчета и описания этих самых мысленных экспериментов со светом.

В ходе размышлений стало понятно в чем собственно дело. Ведь если поведение света одинаково для всех систем отсчета, то как объяснить следующее:

Выше я уже упоминал об эксперименте, в котором «обнаруживается» относительность одновременности. Однако, вспомним другой мысленный (а как же иначе) эксперимент:

Пусть в системе отсчета K' вдоль оси x' неподвижно расположен длинный жесткий стержень. В центре стержня находится импульсная лампа B, а на его концах установлены двое синхронизованных часов, система K' движется вдоль оси x системы K со скоростью V (рисунок № 1(а)). Лампа посылает световые импульсы к концам стержня. В силу равноправия обоих направлений свет в системе K' дойдет до концов стержня одновременно, и часы на концах, покажут одно и то же время t'. Относительно системы K концы стержня движутся со скоростью V так, что один конец движется навстречу световому импульсу, а другой конец свету приходится догонять. Так как скорости распространения световых импульсов в обоих направлениях одинаковы и равны C, то, с точки зрения наблюдателя в системе K, свет раньше дойдет до левого конца стержня, чем до правого (рисунок № 1(b)).


Рисунок № 1. Иллюстрация неодновременности событий в разных СО.

Но этот эксперимент как-то не очень сопоставляется с экспериментом про поезд, смотрителя и пассажира. Ведь если свет от молний переходит в вагон, то он переходит в систему вагона, в которой, судя по эксперименту со стрежнем, он должен также пройти равные расстояния от концов вагона до пассажира.

И вообще, само определение инерциальной системы утверждает, что, находясь внутри системы, невозможно определить её движение. А в эксперименте с вагоном получается, что по разности времени дохождения до пассажира света от ударов молний из концов вагона, можно понять не только, что вагон движется, но и в каком направлении, да еще и скорость вычислить!

Теперь немного доработаем последний эксперимент со стержнем (рисунок № 2). Стержень заменим на непрозрачную для света трубу, добавим на концы трубы D и B датчики света и соединим их проводами одинаковой длины с приемником у внешнего наблюдателя A', мимо которого и перемещается труба. В системе трубы свет от источника А доходит до концов D и B одновременно.



Рисунок № 2. Одновременность событий во всех СО.

Но теперь внешний наблюдатель A' не видит движения света в трубе, а информацию о достижения светом её концов получает от датчиков D и B по проводам одинаковой длины. А так как датчики в системе трубы выдают сигнал одновременно, то и до наблюдателя A' сигнал от датчиков дойдет по проводам одновременно. Таким образом и для наблюдателя A в трубе и для наблюдателя A', вне трубы события ОДНОВРЕМЕННЫ! Ну по крайней мере пока не порвутся провода.

Теперь, заменим в ранее приведенном эксперименте с поездом и платформой зрячего пассажира на слепого. Он вообще не увидит света, а судить об одновременности событий будет, скажем, по звуку от ударов молний. Но звук будет распространяться в воздухе, который движется вместе с вагоном, а значит относительно пассажира неподвижен. Тогда звуковой сигнал о событиях дойдет до пассажира одновременно. Соответственно и для пассажира, и для смотрителя события будут одновременны, разным будет только способ получения информации о них. А если убрать пассажира, то в вагоне никто не обнаружит ударов молний, и тогда этих событий совсем что-ли не было? На лицо простая подмена понятий, а именно ОДНОВРЕМЕННОСТЬ САМИХ СОБЫТИЙ подменили ОДНОВРЕМЕННОСТЬЮ ПОЛУЧЕНИЯ ИНФОРМАЦИИ О НИХ, но это не одно и тоже!

Либо же свет, как и утверждается в той-же СТО, должен вести себя одинаково и не зависимо от источника. Тогда пришел он извне в систему или является светом внутреннего для нее источника – поведение его в системе будет одинаковым.

И тогда, в опыте с трубой (рисунок №2) что для наблюдателя A (в трубе), что для наблюдателя A' (вне трубы) свет до датчиков D и B дойдет не одновременно. И вот тогда не одновременными будут уже сами события, но ИМЕННО СОБЫТИЯ, а не получение информации о них.

То, что свет внешних для Земли источников имеет смещение из-за её движения по орбите, уже установленный и неоспариваемый никем факт, доказанный существованием годовой звездной аберрации. В прочем известно и поведение света Земных источников (даже не принимая во внимание результаты опытов Майкельсона и ему подобных) – свет полностью увлекается Землей в её движении. Ведь если бы свет от земных источников был бы от них не зависим, то весьма затруднительно, а в некоторых случаях и вообще невозможно, было бы пользоваться любыми приборами, действие которых основано на свойствах света.

Но мне надо было самому убедиться в поведении земного света. И для этого мною проведен, по сути очень простой опыт (не буду называть его экспериментом в виду простоты использовавшихся материалов и приборов).

НЕМЫСЛЕННЫЙ ЭКСПЕРИМЕНТ.

С помощью собственноручно изготовленной установки (фото № 1) сделана попытка выявить наличие зависимость поведения света от движения источника. Определялось поведение света источника, связанного с Землей и двигающегося с ней по орбите вокруг Солнца и в составе Солнечной системой в Млечном пути.



Фото № 1 Общий вид, установки: вращающийся канал, в верней части которого установлен источник света – лазерная указка, а внизу мишень с координатной сеткой и индикатор поворота, а также смартфон для съемки процесса.



Фото № 2 Верхний узел крепления канала с лазерной указкой.

 


Фото № 3 Мишень (координатная миллиметровая бумага) с отметкой от указки, в центре индикатор поворота (проволочка, закрепленная на оси вращения канала) и нижний узел крепления канала.



Фото № 4 Изображение мишени с меткой и индикатором поворота на экране фиксирующего устройства (смартфона).

Канал располагался вертикально к поверхности Земли, опыт проводился в 00.30 по московскому времени 13 марта 2022 года. В это время, при вертикальном расположении канала (для исключения влияния его изгиба под собственным весом), обеспечивались максимально близкие к прямым углы между направлением распространения света и векторами линейной скорости движения Земли по орбите, а также движения Земли в составе Солнечной системы вокруг центра Млечного пути.

Если бы свет от указки распространялся бы не зависимо от указки, то из-за движения Земли точка попадания в мишень смещалась бы в сторону за время прохождения света по каналу (длина канала 2 м) на величину смещения Земли в пространстве, с учетом углов между векторами скорости света и движений Земли. Причем в начальном положении точка была бы уже смещена.

При повороте канала направление смещения должно изменяться и общее смещение от движения Земли в составе Солнечной системы вокруг центра млечного пути со скоростью 100 км/с должно было составить около 1,2 мм в направлении Юг-Север (при повороте канала на 1800 в данном направлении) и почти 0,4 мм от движения Земли по орбите вокруг Солнца в направлении Восток-Запад.

На фото № 5 (а – д) стопкадры видеосъемки процесса, взяты только повороты на 90 градусов как наиболее характерные, индикатор всегда направлен на север (видео процесса размещено моем канале в дзене: https://zen.yandex.ru/video/watch/629a5a4b563cf65726ce8227?rid=2906794310.95.1656961136995.31237&t=8).



Фото № 5 а). Начальное положение.




Фото № 5 б). Поворот на 90градусов по часовой стрелке.




Фото № 5 в). Поворот на 180 градусов.




Фото № 5 г). Поворот на 270 градусов.




Фото № 5 д). Полный поворот.

Как видно, никакого смещения метки на мишени при повороте канала не наблюдается. Таким образом, можно смело утверждать, что свет, его источник, мишень и точка попадания перемещаются одновременно и вместе с Землей. И самое главное то, что и внешний наблюдатель тоже будет наблюдать, что свет будет попадать в ту же точку на мишени, пусть и смещающуюся в составе данной группы (Земля, установка).

На рисунке № 3 схематично изображено то, что должно было бы наблюдаться если бы на свет распространялся бы независимо от источника, или если бы существовал Эфир



Рисунок № 3. Ожидаемое смещение метки в случае независимости света от источника.

А на рисунке № 4 то, что наблюдалось в ходе опыта.



Рисунок № 4. Наблюдаемое в ходе опыта поведение света.

И еще раз обозначу самое главное – наблюдатель вне Земли также видел бы, что свет указки попадает в туже точку на мишени.

НОВЫЙ УРОВЕНЬ

Теперь остаётся добавить, пусть пока и мысленно (ну а почему бы не использовать те же методы), свет внешний, представив, что канал – это труба телескопа. На рисунках № 5 и № 6 изображены схемы этого эксперимента. На рисунке № 5 ситуация если бы Земля была бы неподвижна.



Рисунок № 5. Внешний (синий) и внутренний (внутренний) свет в неподвижном канале, если бы Земля не двигалась по орбите.



Рисунок № 6 Реальное поведение внешнего и внутреннего света.

На рисунке № 6 изображено реальная ситуация и смещение внешнего света (схематичное представление годовой звездной аберрации), пока учтем лишь смещение из-за движения Земли по орбите, в направлении восток–запад на те же приблизительно 0,4 мм в сумме при полном обороте канала, или на 0,2 в одну сторону (точность оценки в данном случае значения не имеет, так как важен сам факт смещения).

И снова внешний наблюдатель будет видеть это же самое перемещение отметки от внешнего света по мишени, в том же количестве единиц координатной сетки.

Представим поведение света указки если бы она должна была попадать в мишень, находящуюся у внешнего наблюдателя, который неподвижен относительно Солнца. Как показал проведенный автором опыт, свет указки движется вместе с Землей, а значит смещается мимо внешнего наблюдателя и его мишени, что приведет к смещению по ней метки от света указки. Вроде ничего особенного, та же аберрация, как и для внешнего света на Земле, только в зеркальном отображении, в соответствии с принципом относительности движения.

А вот тут-то и кроется принципиальная разница.

Рейтинг@Mail.ru