Коллапсирующие газовые облака порождают плоские орбиты, поэтому образование планет на описанных выше орбитах маловероятно. Но планета (или астероид), оказавшаяся в результате возмущения на сильно наклоненной орбите, может в редких случаях быть захвачена двойной звездой и в результате оказаться на спиральной орбите между ними. Некоторые данные указывают на то, что Kepler-16b – планета, обращающаяся вокруг одной далекой звезды, – может относиться к этой редкой категории.
Следует отметить, что один из аспектов закона всемирного тяготения немало беспокоил великого автора; по существу, он беспокоил автора закона сильнее, чем большинство его последователей. Как известно, закон описывает силу, с которой одно тело действует на другое, но ничего не говорит о том, как эта сила работает. Закон просто постулирует загадочное «дальнодействие». Когда Солнце притягивает Землю, Земля каким-то образом должна «знать», как далеко она находится от Солнца. Если бы, к примеру, оба объекта соединяла какая-то эластичная веревочка, то эта веревочка могла бы передавать воздействие; тогда величину силы определяли бы физические характеристики связи. Но между Солнцем и Землей нет никакой материальной связи, одно только пустое пространство. Как же Солнце узнает, с какой силой надо тянуть Землю, и как Земля узнает, с какой силой ее тянут?[10]
С практической точки зрения мы можем применять закон всемирного тяготения, не тревожась о том, посредством какого физического механизма сила передается от одного тела другому. Вообще говоря, все именно этим и занимаются. Однако некоторые ученые обладают отчетливой философской жилкой; самый яркий пример – Альберт Эйнштейн. Его специальная теория относительности, опубликованная в 1905 году, изменила представления физиков о пространстве, времени и веществе. Расширение этой теории в 1915 году до общей теории относительности изменило также их представления о гравитации – и, как бы между прочим, разрешило щекотливый вопрос о том, как сила может действовать на расстоянии. Для этого общая теория относительности, собственно говоря, избавилась от силы.
Эйнштейн вывел специальную теорию относительности из одного-единственного фундаментального принципа: скорость света[11] остается неизменной, даже если наблюдатель сам движется с постоянной скоростью. В Ньютоновой механике, если вы находитесь в отрытом автомобиле и бросаете вперед по ходу движения мяч, то скорость мяча, измеренная неподвижным наблюдателем на обочине, будет равна скорости мяча по отношению к автомобилю плюс скорость автомобиля. Аналогично, если вы будете светить фонарем вперед по направлению движения, то скорость света, измеренная человеком на обочине, должна, по идее, равняться обычной скорости света плюс скорость автомобиля.
Экспериментальные данные и кое-какие мысленные эксперименты убедили Эйнштейна, что со светом все иначе. Наблюдаемая скорость света одинакова как для человека, светящего фонарем вперед, так и для человека на обочине. Логические следствия из этого принципа, который, как мне всегда казалось, следовало бы назвать принципом безотносительности, поражают воображение. Ничто не может двигаться быстрее света[12]. По мере того как тело приближается к скорости света, оно сжимается в направлении движения, его масса увеличивается, а время для него течет все более медленно. При скорости, равной скорости света, – если бы такое было возможно – тело стало бы бесконечно тонким и бесконечно тяжелым, а время для него остановилось бы. Масса и энергия связаны между собой: энергия равна массе, умноженной на квадрат скорости света. Наконец, события, которые один наблюдатель видит происходящими одновременно, могут оказаться неодновременными для другого наблюдателя, который движется с постоянной скоростью относительно первого.
В Ньютоновой механике никаких таких странностей нет. Пространство есть пространство, а время есть время, и вместе им не сойтись. В специальной теории относительности пространство и время до некоторой степени взаимозаменяемы, причем степень этой взаимозаменяемости ограничивается скоростью света. Вместе пространство и время образуют единый пространственно-временной континуум. Несмотря на странные предсказания, специальная теория относительности получила признание как наиболее точная теория пространства и времени из всех, какие у нас имеются. Большая часть наиболее парадоксальных эффектов в ней проявляется лишь тогда, когда объекты движутся очень быстро; вот почему мы не замечаем их в повседневной жизни.
Самый очевидный недостающий ингредиент в этой теории – тяготение. Эйнштейн много лет пытался встроить силу тяготения в теорию относительности; отчасти его подталкивала к этому известная аномалия в орбите Меркурия[13]. Конечным результатом этих попыток стала общая теория относительности, распространившая выводы специальной теории относительности с «плоского» пространственно-временного континуума на «искривленное». Мы можем приблизительно представить себе, о чем идет речь, если сократим пространство до двух измерений вместо трех. При этом пространство станет плоскостью, а специальная теория относительности будет описывать движение частиц на этой плоскости. В отсутствие гравитации они движутся по прямым линиям. Как указывал Евклид, прямая есть кратчайшее расстояние между двумя точками. Чтобы ввести в картину гравитацию, поместим на плоскость звезду. Частицы теперь уже не будут двигаться по прямым линиям; вместо этого они начнут огибать звезду по криволинейным траекториям, таким как эллипсы.
В Ньютоновой физике эти траектории искривлены потому, что некая сила отклоняет частицу с прямого пути. В общей теории относительности аналогичный эффект достигается искривлением пространства-времени. Предположим, что звезда искажает форму плоскости, создавая в ней круглую впадину – «гравитационный колодец» со звездой на дне, и будем считать, что частицы всегда движутся по кратчайшему пути, называемому геодезической линией. Поскольку пространственно-временной континуум искривлен, кратчайшим расстоянием в нем перестает быть прямая. К примеру, частица может угодить во впадину и начать описывать круги по стенке на постоянной высоте, как планета на замкнутой орбите.
Вместо гипотетической силы, которая заставляет траекторию частицы отклоняться от прямой линии, Эйнштейн ввел пространство-время, которое уже искривлено и кривизна которого влияет на траекторию движущейся частицы. И не надо никакого дальнодействия: пространство-время искривлено потому, что именно так влияют на него звезды, а все тела, движущиеся по орбитам, реагируют на кривизну поблизости. То, что мы и Ньютон называем тяготением и представляем себе в виде силы, на самом деле является кривизной пространства-времени.
Эйнштейн записал математические формулы – уравнения поля Эйнштейна, или просто уравнения Эйнштейна[14], которые описывают, как кривизна влияет на движение масс и как распределение масс влияет на кривизну. В отсутствие какой бы то ни было массы эти формулы сводятся к специальной теории относительности. Так что все необычные эффекты, такие как замедление времени, присутствуют и в общей теории относительности. В самом деле, гравитация может вызвать замедление времени даже для неподвижного объекта. Как правило, такие парадоксальные эффекты слабы, но в крайних обстоятельствах поведение, предсказанное теорией относительности (любой из них), значительно отличается от Ньютоновой физики.
Вы думаете, что все это звучит безумно? Поначалу многие так думали. Но сегодня всякий, кто в поездках пользуется спутниковой навигацией, полагается на специальную и общую теории относительности. Расчеты, которые сообщают вам, что вы находитесь на окраине Бристоля и движетесь на юг по дороге M32, основаны на навигационных сигналах спутников на околоземных орбитах. Процессор в вашем гаджете, вычисляющий ваше положение, должен исправлять полученные со спутников данные, чтобы учесть два эффекта: скорость движения спутника и его положение в гравитационном колодце Земли[15]. Первая поправка задействует специальную теорию относительности, вторая – общую. Без них прибор спутниковой навигации всего за несколько дней забросил бы вас в середину Атлантического океана.
Общая теория относительности показывает, что Ньютонова физика не является истинной и точной «системой мира», каковой ее считал сам Ньютон (и почти все остальные ученые до XX века). Однако это открытие не означало конца Ньютоновой физики. Более того, сегодня она используется намного шире и в куда более практических целях, чем во времена Ньютона. Ньютонова физика проще, чем теория относительности, – как говорится, «сойдет для сельской местности», да и для любой другой тоже. Различия между двумя теориями становятся очевидны в основном при рассмотрении всевозможных экзотических явлений, таких как черные дыры. Астрономы и разработчики космической техники, работающие в основном на правительства или организации вроде NASA или ЕКА, до сих пор используют Ньютонову механику почти для всех расчетов. Есть, правда, несколько исключений, где время требует очень осторожного отношения. По ходу рассказа мы будем снова и снова сталкиваться с действием закона всемирного тяготения Ньютона. И не случайно: этот закон – одно из величайших научных открытий в истории человечества, его значение трудно переоценить.
Однако, когда дело доходит до космологии – исследования Вселенной в целом и в первую очередь ее происхождения, мы должны отставить Ньютонову физику в сторону. Здесь она уже не в состоянии объяснить ключевые наблюдательные результаты. Вместо нее нужно задействовать общую теорию относительности, которой умело ассистирует квантовая механика. Но даже этим двум великим теориям, судя по всему, требуется дополнительная помощь.
Около двух миллиардов лет назад или около того две галактики столкнулись – или, скорее, началось их взаимопроникновение… Примерно в то же время – плюс-минус, как считается, те же 10 % – практически все солнца обеих галактик обзавелись планетами.
Эдвард Смит. Трипланетие
«Трипланетие» – первый роман знаменитой серии научно-фантастических романов Эдварда Смита «Ленсманы», и его зачин отражает теорию происхождения планетных систем, популярную в 1948 году, в момент написания романа. Даже сегодня такое начало научно-фантастического произведения производило бы сильное впечатление; в то время от него просто захватывало дух. Сами романы представляют собой ранние примеры «широкоформатно-барочной» космической оперы – космического сражения между силами добра (которые представляет Аризия) и зла (Эддора), описанию которого и посвящены все шесть книг серии. Несмотря на «картонные» характеры действующих лиц и банальный сюжет, действие захватывает, к тому же в то время просто не было книг, которые сравнились бы с «Трипланетием» по масштабности.
Сегодня мы уже не считаем, что для создания планет необходимо столкновение галактик, хотя астрономы по-прежнему рассматривают его как один из четырех основных сценариев формирования звезд. Текущая теория формирования Солнечной системы и многих других планетных систем отличается от описанной в эпиграфе, но не уступает ей по масштабности и увлекательности. Выглядит она приблизительно так.
Четыре с половиной миллиарда лет назад[16] облако газообразного водорода поперечником 600 триллионов километров начало медленно разделяться на куски. Каждый такой кусок сконденсировался в звезду, а один из них – Солнечная туманность – сформировал Солнце вместе со всей его системой из восьми планет, пяти (на данный момент) карликовых планет и тысяч астероидов и комет. Третий камень от Солнца в этой системе и есть наш общий дом: Земля.
В отличие от литературного варианта это описание может даже оказаться верным. Рассмотрим доказательства.
Идея о том, что и Солнце, и планеты сконденсировались из огромного газового облака, появилась очень рано и долгое время была преобладающей научной теорией происхождения Солнечной системы. Когда в этой теории выявились проблемы, она почти на 250 лет вышла из моды, но в настоящий момент благодаря новым идеям и новым данным получила новую жизнь.
Рене Декарт известен больше своей философией – «Я мыслю, следовательно, существую» – и математическими достижениями, в первую очередь координатной геометрией, при помощи которой можно перевести геометрию на язык алгебры и наоборот. Но в его время философией называли многие области интеллектуальной деятельности, включая и физику, которая именовалась натуральной философией. В книге Le Monde («Мир», 1664 год[17]) Декарт разобрал в том числе и вопрос происхождения Солнечной системы. Он утверждал, что первоначально Вселенная была бесформенным скоплением частиц, совершающих круговые движения, подобно водоворотам. Один необычайно крупный вихрь закрутился еще более плотно и в конечном итоге уплотнился, сформировав Солнце, а из более мелких вихрей, окружавших его, сформировались планеты.
Эта теория разом объясняла два принципиально важных факта: почему наша Солнечная система содержит множество отдельных тел и почему все планеты в ней обращаются вокруг Солнца в одном направлении. Декартова теория водоворотов не согласуется с тем, что мы сегодня знаем о гравитации, но до появления закона всемирного тяготения оставалось еще два десятка лет. В 1734 году Эмануэль Сведенборг заменил вращающиеся водовороты Декарта огромным облаком газа и пыли. В 1755-м философ Иммануил Кант благословил эту идею, а в 1796 году математик Пьер-Симон де Лаплас сформулировал ее независимо и заново.
Любая теория происхождения Солнечной системы обязательно должна объяснять два ключевых наблюдения. Очевидное наблюдение состоит в том, что вещество в системе собралось в отдельные дискретные тела: Солнце, планеты и т. д. Более тонкое наблюдение касается величины, известной как угловой момент, или момент импульса; появилось оно в результате математического исследования глубоких следствий из законов движения Ньютона.
Чтобы понять, что такое момент импульса, можно привлечь родственную концепцию импульса, которая проще для понимания. Импульс определяет способность любого тела двигаться с постоянной скоростью по прямой в отсутствие действующих на него сил, как гласит первый закон движения Ньютона. Англоязычные спортивные комментаторы часто используют этот термин метафорически: «Да, вот теперь она набрала импульс» (по-русски это звучит хуже, хотя и понятно). Статистический анализ совершенно не подтверждает предположение о том, что после серии хороших результатов новые результаты тоже будут хорошими; комментаторы объясняют неудачу своей метафоры (задним числом) тем, что импульс, мол, опять был потерян. В механике – математике движущихся тел и систем – импульс имеет очень конкретный смысл, и одно из свойств этого понятия состоит в том, что потерять его невозможно. Можно лишь передать его какому-то другому объекту.
Представьте себе движущийся мяч. Его скорость говорит нам, насколько быстро он движется: скажем, 80 километров в час. Механика сосредоточивается на более важной величине – той же скорости, но в векторном варианте; она сообщает нам не только, как быстро движется объект, но и в каком направлении он движется. Если идеально упругий мяч стукнется в стенку под прямым углом и отскочит, то по величине его скорость останется неизменной, а вот направление ее поменяется на обратное. Импульс мяча равен его массе, умноженной на скорость, так что импульс тоже характеристика векторная и имеет величину и направление. Если два тела – легкое и тяжелое – движутся с одинаковой скоростью в одном и том же направлении, то у тяжелого тела импульс больше, чем у легкого. Физически это означает, что, если вы хотите изменить характер движения тела, вам потребуется приложить большую силу. Вы можете без труда отбить мячик для пинг-понга, летящий со скоростью 50 километров в час, но никому в здравом уме не придет в голову попробовать проделать то же с грузовиком.
Математики и физики любят иметь дело с импульсом, потому что в отличие от скорости при изменении системы тел во времени он сохраняется. То есть величина и направление суммарного импульса системы остаются такими же, какими были в начальный момент.
Возможно, это звучит невероятно. Если мяч ударяется в стену и отскакивает от нее, его импульс меняет направление, то есть не остается неизменным – не сохраняется. Но стена (гораздо более массивная, чем мяч) тоже чуть-чуть отскакивает – и отскакивает в противоположную сторону. После этого в игру вступают другие факторы, такие как остальная часть стены, к тому же я приберег в рукаве козырь, который поможет мне выбраться из тупика: закон сохранения работает только тогда, когда нет никаких внешних сил, то есть без постороннего вмешательства. Именно так тело может приобрести импульс в самом начале: оно получает толчок откуда-то извне.
Момент импульса выглядит аналогично, но применим к телам, которые движутся не по прямой, а вращаются. Определить момент импульса даже для единственной частицы – дело непростое, но он, как и импульс, зависит и от массы частицы, и от величины и направления ее скорости. Основная новая черта – то, что момент импульса зависит также от оси вращения, то есть линии, вокруг которой частицы, как считается, вращаются. Представьте себе вращающийся волчок. Он вращается вокруг линии, проходящей через его середину, так что каждая частица вещества в нем вращается вокруг этой оси. Момент импульса частицы относительно этой оси равен скорости ее вращения, умноженной на ее массу. Но направление, на которое указывает момент импульса, соответствует направлению вдоль оси вращения, то есть под прямым углом к плоскости, где вращается частица. Момент импульса всего волчка целиком, опять же взятый относительно оси, получается сложением моментов импульса всех составляющих его частиц с учетом направления, если это необходимо.
Упрощая,[18] можно сказать, что величина суммарного момента импульса вращающейся системы говорит нам о том, насколько мощным вращением обладает эта система, а его направление – о том, вокруг какой оси происходит вращение. Момент импульса сохраняется в любой системе тел, на которые не действуют никакие внешние вращающие силы (на научном сленге это звучит так: отсутствует крутящий момент).
Этот полезный факт непосредственно отражается на коллапсе газового облака, что в чем-то хорошо, в чем-то плохо.
Хорошее следствие состоит в том, что после некоторой первоначальной неразберихи молекулы газа начинают вращаться преимущественно в одной плоскости. Первоначально каждая молекула обладает определенным моментом импульса относительно центра тяжести облака. В отличие от волчка газовое облако не имеет жесткой структуры, поэтому скорости и направления движения молекул в нем, вероятно, меняются в широких пределах. Вряд ли все эти величины точно компенсируют друг друга, так что первоначально облако обладает ненулевым суммарным моментом импульса. Из этого следует, что суммарный момент импульса системы обладает каким-то вполне конкретным направлением и имеет вполне конкретную величину. Закон сохранения гласит, что, поскольку газовое облако развивается под действием гравитации, его суммарный момент импульса не меняется. Следовательно, направление оси остается постоянным, жестко зафиксированным в момент формирования облака. И величина момента импульса – общее количество вращения, если так можно выразиться, – тоже остается постоянной. Что в этой системе может меняться, так это распределение газовых молекул. Каждая молекула газа гравитационно притягивает все остальные молекулы, и первоначально хаотичное шарообразное газовое облако стягивается и образует плоский диск, вращающийся вокруг оси, как тарелка на шесте в цирке.
Это хорошая новость для теории Солнечной туманности, потому что все планеты Солнечной системы имеют орбиты, лежащие очень близко к одной и той же плоскости – эклиптике, – и обращаются вокруг Солнца в одном направлении. Именно поэтому астрономы в давние времена догадались, что и Солнце, и планеты сконденсировались из газового облака после того, как это облако сжалось с образованием протопланетного диска.
К несчастью, для этой «небулярной гипотезы» есть и плохие новости: 99 % момента импульса Солнечной системы сосредоточено в планетах, тогда как на долю Солнца приходится лишь 1 %. Хотя Солнце содержит в себе практически всю массу Солнечной системы, вращается оно довольно медленно, а его частицы располагаются относительно близко к центральной оси. Планеты, хотя уступают Солнцу по массе, находятся гораздо дальше и движутся гораздо быстрее – и потому берут на себя почти весь момент импульса.
Однако подробные теоретические расчеты показывают, что коллапсирующее газовое облако так себя не ведет. Солнце поглощает большую часть вещества в облаке, включая и то, что располагалось намного дальше от центра. Поэтому логично было бы ожидать, что центральное светило поглотит и львиную долю момента импульса… чего, как несложно заметить, оно в данном случае не сделало. Тем не менее нынешнее распределение момента импульса, при котором на планеты приходится львиная его доля, прекрасно согласуется с динамикой Солнечной системы. Она работает и работает уже миллиарды лет. Вообще динамика, как таковая, не представляет собой никакой логической проблемы: проблема только в том, с чего это все началось.
Из этой дилеммы был быстро найден один потенциальный выход. Предположим, что Солнце сформировалось первым. Тогда оно действительно поглотило почти весь момент импульса газового облака – ведь оно поглотило и почти весь составлявший его газ. А позже оно могло приобрести и планеты, захватив сгустки вещества, пролетавшие поблизости. Если их траектория пролегала достаточно далеко от Солнца и двигались они с подходящей скоростью для захвата, в результате вполне могут получиться 99 %, которые мы наблюдаем сейчас.
Основная проблема этого сценария в том, что захватить планету очень сложно. Любая потенциальная планета, которая подлетит достаточно близко, будет ускоряться по мере приближения к Солнцу. Если при этом она умудрится не упасть на Солнце, то, обогнув его, будет вышвырнута прочь. А поскольку сложен захват даже одной планеты, то что же говорить о восьми?
«Возможно, – рассуждал граф Бюффон в 1749 году, – какая-нибудь комета врезалась в Солнце и выплеснула из него достаточно материала для возникновения планет». «Нет, – ответил Лаплас в 1796 году, – планеты, сформировавшиеся таким образом, со временем обязательно упадут обратно на Солнце». Чтобы показать это, достаточно провести примерно те же рассуждения, которые ставят под сомнение вариант захвата, только наоборот. Захватить планету сложно, потому что то, что прилетает сверху, должно улететь обратно наверх (если, конечно, не врежется в Солнце и не будет им поглощено). Выплеснуть часть светила сложно, потому что то, что взлетает вверх, должно упасть. В любом случае мы сегодня знаем (в отличие от них тогда), что кометы слишком легковесны, чтобы выплеснуть из Солнца «каплю» размером с планету, да и материал у Солнца неподходящий.
В 1917 году Джеймс Джинс предложил приливную теорию: некая блуждающая звезда прошла мимо Солнца и «высосала» из него часть вещества в виде длинной тонкой сигары. Потом эта сигара, изначально нестабильная, распалась на отдельные комки, которые превратились в планеты. Опять же, Солнце имеет неподходящий состав; более того, для такого сценария необходимо чрезвычайно маловероятное событие, почти столкновение, и к тому же оно не позволяет придать внешним планетам достаточно большой момент импульса, чтобы они не упали обратно. Были предложены десятки теорий – все разные, но все представляющие собой вариации на сходную тему. Каждая из них согласуется с одними фактами и испытывает трудности в объяснении других.
К 1978 году дискредитированная, казалось бы, небулярная модель вновь вошла в моду. Эндрю Прентис предложил вполне правдоподобное решение проблемы момента импульса – помните, у Солнца он слишком мал, у планет – слишком велик. Нам требуется какой-то способ, который отменил бы сохранение момента импульса и позволил системе что-то получать или отдавать. Прентис предположил, что возле центра газового диска концентрируются частицы пыли и трение между ними замедляет вращение только что сконденсировавшегося Солнца. Виктор Сафронов высказал аналогичные идеи примерно в то же время, и его книга[19] на эту тему привела к тому, что модель «коллапсирующего диска», в которой Солнце и планеты (и много чего еще) сконденсировались из единственного массивного газового облака, раздерганного на множество кусков разных размеров собственной гравитацией с участием трения, получила широкое признание.
Эта теория имеет то достоинство, что она объясняет, почему внутренние планеты (Меркурий, Венера, Земля, Марс) в основном каменные, тогда как внешние (Юпитер, Сатурн, Уран, Нептун) – газово-ледяные гиганты. Дело в том, что более легкие элементы в протопланетном диске должны были концентрироваться дальше от центра, чем тяжелые, хотя и со значительным турбулентным перемешиванием. Наиболее распространенная теория образования планет-гигантов состоит в том, что сначала у них сформировалось скальное ядро, а затем его гравитация привлекла водород, гелий и некоторое количество водяного пара плюс относительно небольшое количество других веществ. Однако воспроизвести такой сценарий при помощи существующих моделей формирования планет пока не получается.
В 2015 году Гарольд Левисон, Катерина Кретке и Мартин Дункан провели компьютерное моделирование, воспроизводящее альтернативный вариант: ядра медленно аккумулировались из мелких камней или «валунов» – кусков каменного вещества размером до метра в поперечнике. В теории этот процесс способен построить ядро, в 10 раз превосходящее по массе Землю, за несколько тысяч лет. Предыдущие модели выявили в этом сценарии другую проблему: он порождает сотни планет размером с Землю. Теперь же удалось показать, что этой проблемы можно избежать, если предположить, что валуны возникают достаточно медленно, чтобы успеть провзаимодействовать между собой на гравитационном уровне. Тогда более крупные валуны выталкивают остальные за пределы диска. Моделирование с разными параметрами часто давало «на выходе» от одного до четырех газовых гигантов на расстоянии 5–15 а.е. от Солнца, что соответствует нынешней структуре Солнечной системы. Одна астрономическая единица (а.е.) равна расстоянию от Земли до Солнца; измерять относительно небольшие космические расстояния такими наглядными единицами часто бывает удобно.
Хороший способ проверить небулярную модель – выяснить, идут ли где-нибудь в космосе аналогичные процессы. В 2014 году астрономы сделали замечательный снимок молодой звезды HL Тельца, расположенной на расстоянии 450 световых лет в указанном созвездии. Эта звезда окружена яркими концентрическими кругами газа, которые чередуются с темными кольцами. Темные кольца почти наверняка образованы зарождающимися планетами, выметающими или собирающими на себя пыль и газ. Было бы трудно найти более яркое подтверждение теории.
Нетрудно поверить, что гравитация может заставить какие-то вещи собраться в комок, но как и за счет чего она может разбросать их? Попробуем представить себе это на уровне интуиции. Вновь заверю вас, что серьезные математические выкладки, которых мы не будем здесь приводить, в целом подтверждают это. Начнем со слипания.
Газ, молекулы которого гравитационно притягивают друг друга, сильно отличается от обычного нашего представления о газах. Если наполнить газом комнату, он очень быстро распределится по всему объему так, чтобы всюду иметь одинаковую плотность. Вы не найдете в своей гостиной случайных карманов, где воздуха почему-то нет. Причина в том, что молекулы воздуха летают вокруг повсюду, сталкиваются и отлетают случайным образом и очень быстро заполняют все доступное пространство. Такое поведение зафиксировано в знаменитом втором законе термодинамики, традиционная интерпретация которого гласит, что газ стремится к наибольшему беспорядку. «Беспорядок» в данном контексте относится к тому, что все должно быть как следует перемешано; это означает, что ни в одной области плотность газа не должна быть выше, чем в любой другой.
На мой взгляд, эта концепция, формально известная как энтропия, слишком скользкая, чтобы ее можно было обозначить одним простым словом, таким как «беспорядок», – хотя бы потому, что словосочетание «равномерно перемешанный», мне кажется, указывает скорее на упорядоченное состояние. Но пока я хочу лишь обозначить традиционную границу. На самом деле в математической формулировке вообще не упоминается ни порядок, ни беспорядок, но она слишком формальна и сложна, чтобы обсуждать ее здесь.
То, что верно для комнаты, верно, конечно, и для большой комнаты. Так почему бы нам не взять комнату размером с целую Вселенную? Более того, почему не рассмотреть саму Вселенную? Ведь ясно, что второй закон термодинамики требует, чтобы весь газ во Вселенной распределился равномерно по всему ее объему, образовав что-то вроде разреженного тумана.
Если бы это было так, то для человечества это было бы очень плохой новостью, поскольку мы с вами состоим не из разреженного тумана. Мы довольно плотные, с этим не поспоришь, и живем на довольно большом комке вещества, которое обращается по орбите вокруг еще более крупного комка – такого крупного, что он поддерживает энергетические ядерные реакции, порождая тепло и свет. Неудивительно, что те, у кого не лежит сердце к обычным научным описаниям происхождения человечества, часто привлекают второй закон термодинамики, чтобы «доказать», что мы не могли бы существовать, если бы некое гиперразумное существо намеренно не сотворило нас и не организовало Вселенную в соответствии с нашими запросами.
Однако термодинамическая модель газа в комнате не годится для построения модели поведения Солнечной туманности – или Вселенной в целом. В ней рассматриваются не те типы взаимодействия. Термодинамика предполагает, что молекулы замечают друг друга только при столкновениях; в этом случае они отскакивают друг от друга. Столкновения носят абсолютно упругий характер (это значит, что энергия при столкновении не теряется), так что молекулы продолжают летать и сталкиваться вечно. Формально можно сказать, что силы, управляющие взаимодействием молекул в термодинамической модели газа, – это силы отталкивания с малым радиусом действия.