bannerbannerbanner
полная версияThe Variation of Animals and Plants under Domestication — Volume 1

Чарльз Дарвин
The Variation of Animals and Plants under Domestication — Volume 1

The following cases are taken from an able paper by Mr. W. Sedgwick, and from Dr. Prosper Lucas. (12/19. 'British and Foreign Medico-Chirurg. Review' April 1861 pages 482-6; 'L'Hered. Nat.' tome 1 pages 391-408.) Amaurosis, either congenital or coming on late in life, and causing total blindness, is often inherited; it has been observed in three successive generations. Congenital absence of the iris has likewise been transmitted for three generations, a cleft-iris for four generations, being limited in this latter case to the males of the family. Opacity of the cornea and congenital smallness of the eyes have been inherited. Portal records a curious case, in which a father and two sons were rendered blind, whenever the head was bent downwards, apparently owing to the crystalline lens, with its capsule, slipping through an unusually large pupil into the anterior chamber of the eye. Day-blindness, or imperfect vision under a bright light, is inherited, as is night-blindness, or an incapacity to see except under a strong light: a case has been recorded, by M. Cunier, of this latter defect having affected eighty-five members of the same family during six generations. The singular incapacity of distinguishing colours, which has been called DALTONISM, is notoriously hereditary, and has been traced through five generations, in which it was confined to the female sex.

With respect to the colour of the iris: deficiency of colouring matter is well known to be hereditary in albinoes. The iris of one eye being of different colour from that of the other, and the iris being spotted, are cases which have been inherited. Mr. Sedgwick gives, in addition, on the authority of Dr. Osborne (12/20. Dr. Osborne, Pres. of Royal College of Phys. in Ireland, published this case in the 'Dublin Medical Journal' for 1835.), the following curious instance of strong inheritance: a family of sixteen sons and five daughters all had eyes "resembling in miniature the markings on the back of a tortoiseshell cat." The mother of this large family had three sisters and a brother all similarly marked, and they derived this peculiarity from their mother, who belonged to a family notorious for transmitting it to their posterity.

Finally, Dr. Lucas emphatically remarks that there is not one single faculty of the eye which is not subject to anomalies; and not one which is not subjected to the principle of inheritance. Mr. Bowman agrees with the general truth of this proposition; which of course does not imply that all malformations are necessarily inherited; this would not even follow if both parents were affected by an anomaly which in most cases was transmissible.]

Even if no single fact had been known with respect to the inheritance of disease and malformations by man, the evidence would have been ample in the case of the horse. And this might have been expected, as horses breed much quicker than man, are matched with care, and are highly valued. I have consulted many works, and the unanimity of the belief by veterinaries of all nations in the transmission of various morbid tendencies is surprising. Authors who have had wide experience give in detail many singular cases, and assert that contracted feet, with the numerous contingent evils, of ring-bones, curbs, splints, spavin, founder and weakness of the front legs, roaring or broken and thick wind, melanosis, specific ophthalmia, and blindness (the great French veterinary Huzard going so far as to say that a blind race could soon be formed), crib-biting, jibbing and ill-temper, are all plainly hereditary. Youatt sums up by saying "there is scarcely a malady to which the horse is subject which is not hereditary;" and M. Bernard adds that the doctrine "that there is scarcely a disease which does not run in the stock, is gaining new advocates every day." (12/21. These various statements are taken from the following works and papers: — Youatt on 'The Horse' pages 35, 220. Lawrence 'The Horse' page 30. Karkeek in an excellent paper in 'Gard. Chronicle' 1853 page 92. Mr. Burke in 'Journal of R. Agricul. Soc. of England' volume 5 page 511. 'Encyclop. of Rural Sports' page 279. Girou de Buzareingues 'Philosoph. Phys.' page 215. See following papers in 'The Veterinary;' Roberts in volume 2 page 144; M. Marrimpoey volume 2 page 387; Mr. Karkeek volume 4 page 5; Youatt on Goitre in 'Dogs' volume 5 page 483: Youatt in volume 6 pages 66, 348, 412; M. Bernard volume 11 page 539; Dr. Samesreuther on 'Cattle' in volume 12 page 181; Percivall in volume 13 page 47. With respect to blindness in horses see also a whole row of authorities in Dr. P. Lucas's great work, tome 1 page 399. Mr. Baker in 'The Veterinary' volume 13 page 721, gives a strong case of hereditary imperfect vision and of jibbing.) So it is in regard to cattle, with consumption, good and bad teeth, fine skin, etc. etc. But enough, and more than enough, has been said on disease. Andrew Knight, from his own experience, asserts that disease is hereditary with plants; and this assertion is endorsed by Lindley. (12/22. Knight on 'The Culture of the Apple and Pear' page 34. Lindley's 'Horticulture' page 180.)

Seeing how hereditary evil qualities are, it is fortunate that good health, vigour, and longevity are equally inherited. It was formerly a well-known practice, when annuities were purchased to be received during the life-time of a nominee, to search out a person belonging to a family of which many members had lived to extreme old age. As to the inheritance of vigour and endurance, the English race-horse offers an excellent instance. Eclipse begot 334, and King Herod 497 winners. A "cock-tail" is a horse not purely bred, but with only one-eighth, or one-sixteenth impure blood in his veins, yet very few instances have ever occurred of such horses having won a great race. They are sometimes as fleet for short distances as thoroughbreds, but as Mr. Robson, the great trainer, asserts, they are deficient in wind, and cannot keep up the pace. Mr. Lawrence also remarks, "perhaps no instance has ever occurred of a three-part-bred horse saving his 'DISTANCE' in running two miles with thoroughbred racers." It has been stated by Cecil, that when unknown horses, whose parents were not celebrated, have unexpectedly won great races, as in the case of Priam, they can always be proved to be descended, on both sides, through many generations, from first-rate ancestors. On the Continent, Baron Cameronn challenges, in a German veterinary periodical, the opponents of the English race-horse to name one good horse on the Continent, which has not some English race-blood in his veins. (12/23. These statements are taken from the following works in order: — Youatt on 'The Horse' page 48; Mr. Darvill in 'The Veterinary' volume 8 page 50. With respect to Robson see 'The Veterinary' volume 3 page 580; Mr. Lawrence on 'The Horse' 1829 page 9; 'The Stud Farm' by Cecil 1851; Baron Cameronn quoted in 'The Veterinary' volume 10 page 500.)

With respect to the transmission of the many slight, but infinitely diversified characters, by which the domestic races of animals and plants are distinguished, nothing need be said; for the very existence of persistent races proclaims the power of inheritance.

A few special cases, however, deserve some consideration. It might have been anticipated, that deviations from the law of symmetry would not have been inherited. But Anderson (12/24. 'Recreations in Agriculture and Nat. Hist.' volume 1 page 68.) states that a rabbit produced in a litter a young animal having only one ear; and from this animal a breed was formed which steadily produced one-eared rabbits. He also mentions a bitch with a single leg deficient, and she produced several puppies with the same deficiency. From Hofacker's account (12/25. 'Ueber die Eigenschaften' etc. 1828 s. 107.) it appears that a one-horned stag was seen in 1781 in a forest in Germany, in 1788 two, and afterwards, from year to year, many were observed with only one horn on the right side of the head. A cow lost a horn by suppuration (12/26. Bronn 'Geschichte der Natur' b. 2 s. 132.), and she produced three calves which had on the same side of the head, instead of a horn, a small bony lump attached merely to the skin; but we here encroach on the subject of inherited mutilations. A man who is left-handed, and a shell in which the spire turns in the wrong directions, are departures from the normal asymmetrical condition, and they are well-known to be inherited.

[POLYDACTYLISM.

Supernumerary fingers and toes are eminently liable, as various authors have insisted, to be inherited. Polydactylism graduates (12/27. Vrolik has discussed this point at full length in a work published in Dutch, from which Sir J. Paget has kindly translated for me passages. See, also, Isidore Geoffroy St. Hilaire 'Hist. des Anomalies' 1832 tome 1 page 684.) by multifarious steps from a mere cutaneous appendage, not including any bone, to a double hand. But an additional digit, supported on a metacarpal bone, and furnished with all the proper muscles, nerves, and vessels, is sometimes so perfect, that it escapes detection, unless the fingers are actually counted. Occasionally there are several supernumerary digits; but usually only one, making the total number six. This one may be attached to the inner or outer margin of the hand, representing either a thumb or little finger, the latter being the more frequent. Generally, through the law of correlation, both hands and both feet are similarly affected. Dr. Burt Wilder has tabulated (12/28. 'Massachusetts Medical Society' volume 2 No. 3; and 'Proc. Boston Soc. of Nat. Hist.' volume 14 1871 page 154.) a large number of cases, and finds that supernumerary digits are more common on the hands than on the feet, and that men are affected oftener than women. Both these facts can be explained on two principles which seem generally to hold good; firstly, that of two parts, the more specialised one is the more variable, and the arm is more highly specialised than the leg; and secondly that male animals are more variable than females.

 

The presence of a greater number of digits than five is a great anomaly, for this number is not normally exceeded by any existing mammal, bird, or reptile. Nevertheless, supernumerary digits are strongly inherited; they have been transmitted through five generations; and in some cases, after disappearing for one, two, or even three generations, have reappeared through reversion. These facts are rendered, as Professor Huxley has observed, more remarkable from its being known in most cases that the affected person has not married one similarly affected. In such cases the child of the fifth generation would have only 1-32nd part of the blood of his first sedigitated ancestor. Other cases are rendered remarkable by the affection gathering force, as Dr. Struthers has shown, in each generation, though in each the affected person married one not affected; moreover, such additional digits are often amputated soon after birth, and can seldom have been strengthened by use. Dr. Struthers gives the following instance: in the first generation an additional digit appeared on one hand; in the second, on both hands; in the third, three brothers had both hands, and one of the brothers a foot affected; and in the fourth generation all four limbs were affected. Yet we must not over-estimate the force of inheritance. Dr. Struthers asserts that cases of non-inheritance and of the first appearance of additional digits in unaffected families are much more frequent than cases of inheritance. Many other deviations of structure, of a nature almost as anomalous as supernumerary digits, such as deficient phalanges (12/29. Dr. J.W. Ogle gives a case of the inheritance of deficient phalanges during four generations. He adds references to various recent papers on inheritance 'Brit. and For. Med. — Chirurg. Review' April 1872.), thickened joints, crooked fingers, etc., are, in like manner, strongly inherited, and are equally subject to intermission, together with reversion, though in such cases there is no reason to suppose that both parents had been similarly affected. (12/30. For these several statements see Dr. Struthers 'Edinburgh New Phil. Journal' July 1863 especially on intermissions in the line of descent. Prof. Huxley 'Lectures on our Knowledge of Organic Nature' 1863 page 97. With respect to inheritance, see Dr. Prosper Lucas 'L'Heredite Nat.' tome 1 page 325. Isid. Geoffroy 'Anom.' tome 1 page 701. Sir A. Carlisle in 'Phil. Transact.' 1814 page 94. A. Walker on 'Intermarriage' 1838 page 140 gives a case of five generations; as does Mr. Sedgwick in 'Brit. and Foreign Medico-Chirurg. Review' April 1863 page 462. On the inheritance of other anomalies in the extremities see Dr. H. Dobell in volume 46 of Medico-Chirurg. Transactions 1863; also Mr. Sedgwick in op. cit. April 1863 page 460. With respect to additional digits in the negro see Prichard 'Physical History of Mankind.' Dr. Dieffenbach 'Jour. Royal Geograph. Soc.' 1841 page 208 says this anomaly is not uncommon with the Polynesians of the Chatham Islands; and I have heard of several cases with Hindus and Arabs.)

Additional digits have been observed in negroes as well as in other races of man, and in several of the lower animals, and have been inherited. Six toes have been described on the hind feet of the newt (Salamandra cristata), and are said to have occurred with the frog. It deserves notice, that the six-toed newt, though adult, preserved some of its larval characters; for part of the hyoidal apparatus, which is properly absorbed during the act of metamorphosis, was retained. It is also remarkable that in the case of man various structures in an embryonic or arrested state of development, such as a cleft-palate, bifid uterus, etc., are often accompanied by polydactylism. (12/31. Meckel and Isid G. St. Hilaire insist on this fact. See also M. A. Roujou 'Sur quelques Analogies du Type Humain' page 61 published, I believe, in the 'Journal of the Anthropolog. Soc. of Paris' January 1872.) Six toes on the hinder feet are known to have been inherited for three generations of cats. In several breeds of the fowl the hinder toe is double, and is generally transmitted truly, as is well shown when Dorkings are crossed with common four-toed breeds (12/32. 'The Poultry Chronicle' 1854 page 559.) With animals which have properly less than five digits, the number is sometimes increased to five, especially on the front legs, though rarely carried beyond that number; but this is due to the development of a digit already existing in a more or less rudimentary state. Thus, the dog has properly four toes behind, but in the larger breeds a fifth toe is commonly, though not perfectly, developed. Horses, which properly have one toe alone fully developed with rudiments of the others, have been described with each foot bearing two or three small separate hoofs: analogous facts have been noticed with cows, sheep, goats, and pigs. (12/33. The statements in this paragraph are taken from Isidore Geoffroy St. Hilaire 'Hist. des Anomalies' tome 1 pages 688-693. Mr. Goodman gives, 'Phil. Soc. of Cambridge' November 25, 1872 the case of a cow with three well developed toes on each hind limb, besides the ordinary rudiments; and her calf by an ordinary bull had extra digits. This calf also bore two calves having extra digits.)

There is a famous case described by Mr. White of a child, three years old, with a thumb double from the first joint. He removed the lesser thumb, which was furnished with a nail; but to his astonishment it grew again and reproduced a nail. The child was then taken to an eminent London surgeon, and the newly-grown thumb was removed by its socket-joint, but again it grew and reproduced a nail. Dr. Struthers mentions a case of the partial regrowth of an additional thumb, amputated when a child was three months old; and the late Dr. Falconer communicated to me an analogous instance. In the last edition of this work I also gave a case of the regrowth of a supernumerary little-finger after amputation; but having been informed by Dr. Bachmaier that several eminent surgeons expressed, at a meeting of the Anthropological Society of Munich, great doubt about my statements, I have made more particular inquiries. The full information thus gained, together with a tracing of the hand in its present state, has been laid before Sir J. Paget, and he has come to the conclusion that the degree of regrowth in this case is not greater than sometimes occurs with normal bones, especially with the humerus, when amputated at an early age. He further does not feel fully satisfied about the facts recorded by Mr. White. This being so, it is necessary for me to withdraw the view which I formerly advanced, with much hesitation, chiefly on the ground of the supposed regrowth of additional digits, namely, that their occasional development in man is a case of reversion to a lowly, organised progenitor provided with more than five digits.]

I may here allude to a class of facts closely allied to, but somewhat different from, ordinary cases of inheritance. Sir H. Holland (12/34. 'Medical Notes and Reflections' 1839 pages 24, 34. See also Dr. P. Lucas 'L'Hered. Nat.' tome 2 page 33.) states that brothers and sisters of the same family are frequently affected, often at about the same age, by the same peculiar disease, not known to have previously occurred in the family. He specifies the occurrence of diabetes in three brothers under ten years old; he also remarks that children of the same family often exhibit in common infantile diseases, the same peculiar symptoms. My father mentioned to me the case of four brothers who died between the ages of sixty and seventy, in the same highly peculiar comatose state. An instance has already been given of supernumerary digits appearing in four children out of six in a previously unaffected family. Dr. Devay states (12/35. 'Du Danger des Mariages Consanguins' 2nd edition 1862 page 103.) that two brothers married two sisters, their first-cousins, none of the four nor any relation being an albino; but the seven children produced from this double marriage were all perfect albinoes. Some of these cases, as Mr. Sedgwick (12/36. 'British and Foreign Medico-Chirurg. Review' July 1863 pages 183, 189.) has shown, are probably the result of reversion to a remote ancestor, of whom no record had been preserved; and all these cases are so far directly connected with inheritance that no doubt the children inherited a similar constitution from their parents, and, from being exposed to nearly similar conditions of life, it is not surprising that they should be affected in the same manner and at the same period of life.

Most of the facts hitherto given have served to illustrate the force of inheritance, but we must now consider cases grouped as well as the subject allows into classes, showing how feeble, capricious, or deficient the power of inheritance sometimes is. When a new peculiarity first appears, we can never predict whether it will be inherited. If both parents from their birth present the same peculiarity, the probability is strong that it will be transmitted to at least some of their offspring. We have seen that variegation is transmitted much more feebly by seed, taken from a branch which had become variegated through bud-variation, than from plants which were variegated as seedlings. With most plants the power of transmission notoriously depends on some innate capacity in the individual: thus Vilmorin (12/37. Verlot 'La Product. des Varietes' 1865 page 32.) raised from a peculiarly coloured balsam some seedlings, which all resembled their parent; but of these seedlings some failed to transmit the new character, whilst others transmitted it to all their descendants during several successive generations. So again with a variety of the rose, two plants alone out of six were found by Vilmorin to be capable of transmitting the desired character; numerous analogous cases could be given.

[The weeping or pendulous growth of trees is strongly inherited in some cases, and, without any assignable reason, feebly in other cases. I have selected this character as an instance of capricious inheritance, because it is certainly not proper to the parent-species, and because, both sexes being borne on the same tree, both tend to transmit the same character. Even supposing that there may have been in some instances crossing with adjoining trees of the same species, it is not probable that all the seedlings would have been thus affected. At Moccas Court there is a famous weeping oak; many of its branches "are 30 feet long, and no thicker in any part of this length than a common rope: " this tree transmits its weeping character, in a greater or less degree, to all its seedlings; some of the young oaks being so flexible that they have to be supported by props; others not showing the weeping tendency till about twenty years old. (12/38. Loudon's 'Gardener's Mag.' volume 12 1836 page 368.) Mr. Rivers fertilised, as he informs me, the flowers of a new Belgian weeping thorn (Crataegus oxyacantha) with pollen from a crimson not-weeping variety, and three young trees, "now six or seven years old, show a decided tendency to be pendulous, but as yet are not so much so as the mother-plant." According to Mr. MacNab (12/39. Verlot 'La Product. des Varietes' 1865 page 94.), seedlings from a magnificent weeping birch (Betula alba), in the Botanic Garden at Edinburgh, grew for the first ten or fifteen years upright, but then all became weepers like their parent. A peach with pendulous branches, like those of the weeping willow, has been found capable of propagation by seed. (12/40. Bronn 'Geschichte der Natur' b. 2 s. 121. Mr. Meehan makes a similar statement in 'Proc. Nat. of Philadelphia' 1872 page 235.) Lastly, a weeping or rather a prostrate yew (Taxus baccata) was found in a hedge in Shropshire; it was a male, but one branch bore female flowers, and produced berries; these, being sown, produced seventeen trees all of which had exactly the same peculiar habit with the parent-tree. (12/41. Rev. W.A. Leighton 'Flora of Shropshire' page 497; and Charlesworth 'Mag. of Nat. Hist.' volume 1 1837 page 30. I possess prostrate trees produced from these seeds.)

These facts, it might have been thought, would have been sufficient to render it probable that a pendulous habit would in all cases be strictly inherited. But let us look to the other side. Mr. MacNab (12/42. Verlot op. cit. page 93.) sowed seeds of the weeping beech (Fagus sylvatica), but succeeded in raising only common beeches. Mr. Rivers, at my request, raised a number of seedlings from three distinct varieties of weeping elm; and at least one of the parent-trees was so situated that it could not have been crossed by any other elm; but none of the young trees, now about a foot or two in height, show the least signs of weeping. Mr. Rivers formerly sowed above twenty thousand seeds of the weeping ash (Fraxinus excelsior), and not a single seedling was in the least degree pendulous: in Germany, M. Borchmeyer raised a thousand seedlings, with the same result. Nevertheless, Mr. Anderson, of the Chelsea Botanic Garden, by sowing seed from a weeping ash, which was found before the year 1780, in Cambridgeshire, raised several pendulous trees. (12/43. For these several statements see Loudon's 'Gard. Magazine' volume 10 1834 pages 408, 180; and volume 9 1833 page 597.) Professor Henslow also informs me that some seedlings from a female weeping ash in the Botanic Garden at Cambridge were at first a little pendulous, but afterwards became quite upright: it is probable that this latter tree, which transmits to a certain extent its pendulous habit, was derived by a bud from the same original Cambridgeshire stock; whilst other weeping ashes may have had a distinct origin. But the crowning case, communicated to me by Mr. Rivers, which shows how capricious is the inheritance of a pendulous habit, is that a variety of another species of ash (F. lentiscifolia), now about twenty years old, which was formerly pendulous, "has long lost this habit, every shoot being remarkably erect; but seedlings formerly raised from it were perfectly prostrate, the stems not rising more than two inches above the ground." Thus the weeping variety of the common ash, which has been extensively propagated by buds during a long period, did not with Mr. Rivers, transmit its character to one seedling out of above twenty thousand; whereas the weeping variety of a second species of ash, which could not, whilst grown in the same garden, retain its own weeping character, transmitted to its character the pendulous habit in excess!

 

Many analogous facts could be given, showing how apparently capricious is the principle of inheritance. All the seedlings from a variety of the Barberry (B. vulgaris) with red leaves inherited the same character; only about one-third of the seedlings of the copper Beech (Fagus sylvatica) had purple leaves. Not one out of a hundred seedlings of a variety of the Cerasus padus, with yellow fruit, bore yellow fruit: one-twelfth of the seedlings of the variety of Cornus mascula, with yellow fruit, came true (12/44. These statements are taken from Alph. De Candolle 'Bot. Geograph.' page 1083.): and lastly, all the trees raised by my father from a yellow- berried holly (Ilex aquifolium), found wild, produced yellow berries. Vilmorin (12/45. Verlot op. cit. page 38.) observed in a bed of Saponaria calabrica an extremely dwarf variety, and raised from it a large number of seedlings; some of these partially resembled their parent, and he selected their seed; but the grandchildren were not in the least dwarfed: on the other hand, he observed a stunted and bushy variety of Tagetes signata growing in the midst of the common varieties by which it was probably crossed; for most of the seedlings raised from this plant were intermediate in character, only two perfectly resembling their parent; but seed saved from these two plants reproduced the new variety so truly, that hardly any selection has since been necessary.

Flowers transmit their colour truly, or most capriciously. Many annuals come true: thus I purchased German seeds of thirty-four named sub-varieties of one RACE of ten-week stocks (Matthiola annua), and raised a hundred and forty plants, all of which, with the exception of a single plant, came true. In saying this, however, it must be understood that I could distinguish only twenty kinds out of the thirty-four named sub-varieties; nor did the colour of the flower always correspond with the name affixed to the packet; but I say that they came true, because in each of the thirty- six short rows every plant was absolutely alike, with the one single exception. Again, I procured packets of German seed of twenty-five named varieties of common and quilled asters, and raised a hundred and twenty- four plants; of these, all except ten were true in the above limited sense; and I considered even a wrong shade of colour as false.

It is a singular circumstance that white varieties generally transmit their colour much more truly than any other variety. This fact probably stands in close relation with one observed by Verlot (12/46. Op. cit. page 59.), namely, that flowers which are normally white rarely vary into any other colour. I have found that the white varieties of Delphinium consolida and of the Stock are the truest. It is, indeed, sufficient to look through a nurseryman's seed-list, to see the large number of white varieties which can be propagated by seed. The several coloured varieties of the sweet-pea (Lathyrus odoratus) are very true; but I hear from Mr. Masters, of Canterbury, who has particularly attended to this plant, that the white variety is the truest. The hyacinth, when propagated by seed, is extremely inconstant in colour, but "white hyacinths almost always give by seed white-flowered plants" (12/47. Alph. De Candolle 'Geograph. Bot.' page 1082.); and Mr. Masters informs me that the yellow varieties also reproduce their colour, but of different shades. On the other hand, pink and blue varieties, the latter being the natural colour, are not nearly so true: hence, as Mr. Masters has remarked to me, "we see that a garden variety may acquire a more permanent habit than a natural species;" but it should have been added, that this occurs under cultivation, and therefore under changed conditions.

With many flowers, especially perennials, nothing can be more fluctuating than the colour of the seedlings, as is notoriously the case with verbenas, carnations, dahlias, cinerarias, and others. (12/48. See 'Cottage Gardener' April 10, 1860 page 18 and September 10, 1861 page 456; 'Gardener's Chronicle' 1845 page 102.) I sowed seed of twelve named varieties of Snapdragon (Antirrhinum majus), and utter confusion was the result. In most cases the extremely fluctuating colour of seedling plants is probably in chief part due to crosses between differently-coloured varieties during previous generations. It is almost certain that this is the case with the polyanthus and coloured primrose (Primula veris and vulgaris), from their reciprocally dimorphic structure (12/49. Darwin in 'Journal of Proc. Linn. Soc. Bot.' 1862 page 94.); and these are plants which florists speak of as never coming true by seed: but if care be taken to prevent crossing, neither species is by any means very inconstant, in colour; thus I raised twenty-three plants from a purple primrose, fertilised by Mr. J. Scott with its pollen, and eighteen came up purple of different shades, and only five reverted to the ordinary yellow colour: again, I raised twenty plants from a bright-red cowslip, similarly treated by Mr. Scott, and every one perfectly resembled its parent in colour, as likewise did, with the exception of a single plant, 72 grandchildren. Even with the most variable flowers, it is probable that each delicate shade of colour might be permanently fixed so as to be transmitted by seed, by cultivation in the same soil, by long-continued selection, and especially by the prevention of crosses. I infer this from certain annual larkspurs (Delphinium consolida and ajacis), of which common seedlings present a greater diversity of colour than any other plant known to me; yet on procuring seed of five named German varieties of D. consolida, only nine plants out of ninety-four were false; and the seedlings of six varieties of D. ajacis were true in the same manner and degree as with the stocks above described. A distinguished botanist maintains that the annual species of Delphinium are always self-fertilised; therefore I may mention that thirty-two flowers on a branch of D. consolida, enclosed in a net, yielded twenty-seven capsules, with an average of 17.2 seed in each; whilst five flowers, under the same net, which were artificially fertilised, in the same manner as must be effected by bees during their incessant visits, yielded five capsules with an average of 35.2 fine seed; and this shows that the agency of insects is necessary for the full fertility of this plant. Analogous facts could be given with respect to the crossing of many other flowers, such as carnations, etc., of which the varieties fluctuate much in colour.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39 
Рейтинг@Mail.ru