bannerbannerbanner
полная версияThe Variation of Animals and Plants under Domestication — Volume 1

Чарльз Дарвин
The Variation of Animals and Plants under Domestication — Volume 1

GOLD-FISH.

Besides mammals and birds, only a few animals belonging to the other great classes have been domesticated; but to show that it is an almost universal law that animals, when removed from their natural conditions of life, vary, and that races can be formed when selection is applied, it is necessary to say a few words on gold-fish, bees, and silk-moths.

Gold-fish (Cyprinus auratus) were introduced into Europe only two or three centuries ago; but they have been kept in confinement from an ancient period in China. Mr. Blyth (8/50. The 'Indian Field' 1858 page 255.) suspects, from the analogous variation of other fishes, that golden- coloured fish do not occur in a state of nature. These fishes frequently live under the most unnatural conditions, and their variability in colour, size, and in some important points of structure is very great. M. Sauvigny has described and given coloured drawings of no less than eighty-nine varieties. (8/51. Yarrell 'British Fishes' volume 1 page 319.) Many of the varieties, however, such as triple tail-fins, etc., ought to be called monstrosities; but it is difficult to draw any distinct line between a variation and a monstrosity. As gold-fish are kept for ornament or curiosity, and as "the Chinese are just the people to have secluded a chance variety of any kind, and to have matched and paired from it" (8/52. Mr. Blyth in the 'Indian Field' 1858 page 255.), it might have been predicted that selection would have been largely practised in the formation of new breeds; and this is the case. In an old Chinese work it is said that fish with vermilion scales were first raised in confinement during the Sung dynasty (which commenced A.D. 960), "and now they are cultivated in families everywhere for the sake of ornament." In another and more ancient work, it is said that "there is not a household where the gold-fish is not cultivated, in RIVALRY as to its colour, and as a source of profit," etc. (8/53. W.F. Mayers 'Chinese Notes and Queries' August 1868 page 123.) Although many breeds exist, it is a singular fact that the variations are often not inherited. Sir R. Heron (8/54. 'Proc. Zoolog. Soc.' May 25, 1842.) kept many of these fishes, and placed all the deformed ones, namely, those destitute of dorsal fins and those furnished with a double anal fin, or triple tail, in a pond by themselves; but they did "not produce a greater proportion of deformed offspring than the perfect fishes."

Passing over an almost infinite diversity of colour, we meet with the most extraordinary modifications of structure. Thus, out of about two dozen specimens bought in London, Mr. Yarrell observed some with the dorsal fin extending along more than half the length of the back: others with this fin reduced to only five or six rays: and one with no dorsal fin. The anal fins are sometimes double, and the tail is often triple. This latter deviation of structure seems generally to occur "at the expense of the whole or part of some other fin (8/55. Yarrell 'British Fishes' volume 1 page 319.); but Bory de Saint-Vincent (8/56. 'Dict. Class. d'Hist. Nat.' tome 5 page 276.) saw at Madrid gold-fish furnished with a dorsal fin and a triple tail. One variety is characterised by a hump on its back near the head; and the Rev. L. Jenyns (Blomefield) (8/57. 'Observations in Nat. Hist.' 1846 page 211. Dr. Gray has described in 'Annals and Mag. of Nat. Hist.' 1860 page 151 a nearly similar variety but destitute of a dorsal fin.) has described a most singular variety, imported from China, almost globular in form like a Diodon, with "the fleshy part of the tail as if entirely cut away? the caudal fin being set on a little behind the dorsal and immediately above the anal." In this fish the anal and caudal fins were double; the anal fin being attached to the body in a vertical line: the eyes also were enormously large and protuberant.

HIVE-BEES.

Bees have been domesticated from an ancient period; if indeed their state can be considered one of domestication, for they search for their own food, with the exception of a little generally given to them during the winter. Their habitation is a hive instead of a hole in a tree. Bees, however, have been transported into almost every quarter of the world, so that climate ought to have produced whatever direct effect it is capable of producing. It is frequently asserted that the bees in different parts of Great Britain differ in size, colour, and temper; and Godron (8/58. 'De l'Espece' 1859 page 459. With respect to the bees of Burgundy see M. Gerard, art. 'Espece' in 'Dict. Univers. d'Hist. Nat.') says that they are generally larger in the south than in other parts of France; it has also been asserted that the little brown bees of High Burgundy, when transported to La Bresse become large and yellow in the second generation. But these statements require confirmation. As far as size is concerned, it is known that bees produced in very old combs are smaller, owing to the cells having become smaller from the successive old cocoons. The best authorities (8/59. See a discussion on this subject, in answer to a question of mine, in 'Journal of Horticulture' 1862 pages 225-242; also Mr. Bevan Fox in ditto 1862 page 284) concur that, with the exception of the Ligurian race or species, presently to be mentioned, distinct breeds do not exist in Britain or on the Continent. There is, however, even in the same stock, some variability in colour. Thus, Mr. Woodbury states (8/60. This excellent observer may be implicitly trusted; see 'Journal of Horticulture' July 14, 1863 page 39.) that he has several times seen queen bees of the common kind annulated with yellow-like Ligurian queens, and the latter dark-coloured like common bees. He has also observed variations in the colour of the drones, without any corresponding difference in the queens or workers of the same hive. The great apiarian, Dzierzon, in answer to my queries on this subject, says (8/61. 'Journal of Horticulture' September 9, 1862 page 463; see also Herr Kleine on same subject November 11 page 643, who sums up, that, though there is some variability in colour, no constant or perceptible differences can be detected in the bees of Germany.), that in Germany bees of some stocks are decidedly dark, whilst others are remarkable for their yellow colour. Bees also seem to differ in habits in different districts, for Dzierzon adds, "If many stocks with their offspring are more inclined to swarm, whilst others are richer in honey, so that some bee-keepers even distinguish between swarming and honey-gathering bees, this is a habit which has become second nature, caused by the customary mode of keeping the bees and the pasturage of the district. For example, what a difference in this respect one may perceive to exist between the bees of the Luneburg heath and those of this country!"..."Removing an old queen and substituting a young one of the current year is here an infallible mode of keeping the strongest stock from swarming and preventing drone-breeding; whilst the same means if adopted in Hanover would certainly be of no avail." I procured a hive full of dead bees from Jamaica, where they have long been naturalised, and, on carefully comparing them under the microscope with my own bees, I could detect not a trace of difference.

This remarkable uniformity in the hive-bee, wherever kept, may probably be accounted for by the great difficulty, or rather impossibility, of bringing selection into play by pairing particular queens and drones, for these insects unite only during flight. Nor is there any record, with a single partial exception, of any person having separated and bred from a hive in which the workers presented some appreciable difference. In order to form a new breed, seclusion from other bees would, as we now know, be indispensable; for since the introduction of the Ligurian bee into Germany and England, it has been found that the drones wander at least two miles from their own hives, and often cross with the queens of the common bee. (8/62. Mr. Woodbury has published several such accounts in 'Journal of Horticulture' 1861 and 1862.) The Ligurian bee, although perfectly fertile when crossed with the common kind, is ranked by most naturalists as a distinct species, whilst by others it is ranked as a variety: but this form need not here be noticed, as there is no reason to believe that it is the product of domestication. The Egyptian and some other bees are likewise ranked by Dr. Gerstacker (8/63. 'Annals and Mag. of Nat. Hist.' 3rd series volume 11 page 339.) but not by other highly competent judges, as geographical races; he grounds his conclusion in chief part on the fact that in certain districts, as in the Crimea and Rhodes, they vary so much in colour, that the several geographical races can be closely connected by intermediate forms.

I have alluded to a single instance of the separation and preservation of a particular stock of bees. Mr. Lowe (8/64. 'The Cottage Gardener' May 1860 page 110; and ditto in 'Journal of Hort.' 1862 page 242.) procured some bees from a cottager a few miles from Edinburgh, and perceived that they differed from the common bee in the hairs on the head and thorax being lighter coloured and more profuse in quantity. From the date of the introduction of the Ligurian bee into Great Britain we may feel sure that these bees had not been crossed with this form. Mr. Lowe propagated this variety, but unfortunately did not separate the stock from his other bees, and after three generations the new character was almost completely lost. Nevertheless, as he adds, "a great number of the bees still retain traces, though faint, of the original colony." This case shows us what could probably be effected by careful and long-continued selection applied exclusively to the workers, for, as we have seen, queens and drones cannot be selected and paired.

 

SILK-MOTHS.

These insects are in several respects interesting to us, more especially because they have varied largely at an early period of life, and the variations have been inherited at corresponding periods. As the value of the silk-moth depends entirely on the cocoon, every change in its structure and qualities has been carefully attended to, and races differing much in the cocoon, but hardly at all in the adult state, have been produced. With the races of most other domestic animals, the young resemble each other closely, whilst the adults differ much.

It would be useless, even if it were possible, to describe all the many kinds of silkworms. Several distinct species exist in India and China which produce useful silk, and some of these are capable of freely crossing with the common silk-moth, as has been recently ascertained in France. Captain Hutton (8/65. 'Transact. Entomolog. Soc.' 3rd series volume 3 pages 143-173 and pages 295-331.) states that throughout the world at least six species have been domesticated; and he believes that the silk-moths reared in Europe belong to two or three species. This, however, is not the opinion of several capable judges who have particularly attended to the cultivation of this insect in France; and hardly accords with some facts presently to be given.

The common silk-moth (Bombyx mori) was brought to Constantinople in the sixth century, whence it was carried into Italy, and in 1494 into France. (8/66. Godron 'De l'Espece' 1859 tome 1 page 460. The antiquity of the silkworm in China is given on the authority of Stanislas Julien.) Everything has been favourable for the variation of this insect. It is believed to have been domesticated in China as long ago as 2700 B.C. It has been kept under unnatural and diversified conditions of life, and has been transported into many countries. There is reason to believe that the nature of the food given to the caterpillar influences to a certain extent the character of the breed. (8/67. See the remarks of Prof. Westwood, Gen. Hearsey and others at the meeting of the Entomolog. Soc. of London July 1861.) Disuse has apparently aided in checking the development of the wings. But the most important element in the production of the many now existing, much modified races, no doubt has been the close attention which has long been applied in many countries to every promising variation. The care taken in Europe in the selection of the best cocoons and moths for breeding is notorious (8/68. See for instance M. A. de Quatrefages 'Etudes sur les Maladies actuelles du Ver a Soie' 1859 page 101.), and the production of eggs is followed as a distinct trade in parts of France. I have made inquiries through Dr. Falconer, and am assured that in India the natives are equally careful in the process of selection. In China the production of eggs is confined to certain favourable districts, and the raisers are precluded by law from producing silk, so that their whole attention may be necessarily given up to this one object. (8/69. My authorities for the statements will be given in the chapter on Selection.)

[The following details on the differences between the several breeds are taken, when not stated to the contrary, from M. Robinet's excellent work (8/70. 'Manuel de l'Educateur de Vers a Soie' 1848.), which bears every sign of care and large experience. The EGGS in the different races vary in colour, in shape (being round, elliptic or oval), and in size. The eggs laid in June in the south of France, and in July in the central provinces, do not hatch until the following spring; and it is in vain, says M. Robinet, to expose them to a temperature gradually raised, in order that the caterpillar may be quickly developed. Yet occasionally, without any known cause, batches of eggs are produced, which immediately begin to undergo the proper changes, and are hatched in from twenty to thirty days. From these and some other analogous facts it may be concluded that the Trevoltini silkworms of Italy, of which the caterpillars are hatched in from fifteen to twenty days, do not necessarily form, as has been maintained, a distinct species. Although the breeds which live in temperate countries produce eggs which cannot be immediately hatched by artificial heat, yet when they are removed to and reared in a hot country they gradually acquire the character of quick development, as in the Trevoltini races. (8/71. Robinet ibid pages 12, 318. I may add that the eggs of N. American silkworms taken to the Sandwich Islands produced moths at very irregular periods; and the moths thus raised yielded eggs which were even worse in this respect. Some were hatched in ten days, and others not until after the lapse of many months. No doubt a regular early character would ultimately have been acquired. See review in 'Athenaeum' 1844 page 329 of J. Jarves 'Scenes in the Sandwich Islands.')

CATERPILLARS.

These vary greatly in size and colour. The skin is generally white, sometimes mottled with black or grey, and occasionally quite black. The colour, however, as M. Robinet asserts, is not constant, even in perfectly pure breeds; except in the race tigree, so called from being marked with transverse black stripes. As the general colour of the caterpillar is not correlated with that of the silk (8/72. 'The Art of rearing Silkworms' translated from Count Dandolo 1825 page 23.), this character is disregarded by cultivators, and has not been fixed by selection. Captain Hutton, in the paper before referred to, has argued with much force that the dark tiger- like marks, which so frequently appear during the later moults in the caterpillars of various breeds, are due to reversion; for the caterpillars of several allied wild species of Bombyx are marked and coloured in this manner. He separated some caterpillars with the tiger-like marks, and in the succeeding spring (pages 149, 298) nearly all the caterpillars reared from them were dark-brindled, and the tints became still darker in the third generation. The moths reared from these caterpillars (8/73. 'Transact. Ent. Soc.' ut supra pages 153, 308.) also became darker, and resembled in colouring the wild B. huttoni. On this view of the tiger-like marks being due to reversion, the persistency with which they are transmitted is intelligible.

Several years ago Mrs. Whitby took great pains in breeding silkworms on a large scale, and she informed me that some of her caterpillars had dark eyebrows. This is probably the first step in reversion towards the tiger- like marks, and I was curious to know whether so trifling a character would be inherited. At my request she separated in 1848 twenty of these caterpillars, and having kept the moths separate, bred from them. Of the many caterpillars thus reared, "every one without exception had eyebrows, some darker and more decidedly marked than the others, but ALL had eyebrows more or less plainly visible." Black caterpillars occasionally appear amongst those of the common kind, but in so variable a manner, that, according to M. Robinet, the same race will one year exclusively produce white caterpillars, and the next year many black ones; nevertheless, I have been informed by M. A. Bossi of Geneva, that, if these black caterpillars are separately bred from, they reproduce the same colour; but the cocoons and moths reared from them do not present any difference.

The caterpillar in Europe ordinarily moults four times before passing into the cocoon stage; but there are races "a trois mues," and the Trevoltini race likewise moults only thrice. It might have been thought that so important a physiological difference would not have arisen under domestication; but M. Robinet (8/74. Robinet ibid page 317.) states that, on the one hand, ordinary caterpillars occasionally spin their cocoons after only three moults, and, on the other hand, "presque toutes les races a trois mues, que nous avons experimentees, ont fait quatre mues a la seconde ou a la troisieme annee, ce qui semble prouver qu'il a suffi de les placer dans des conditions favorables pour leur rendre une faculte qu'elles avaient perdue sous des influences moins favorables."

COCOONS.

The caterpillar in changing into the cocoon loses about 50 per cent of its weight; but the amount of loss differs in different breeds, and this is of importance to the cultivator. The cocoon in the different races presents characteristic differences; being large or small; — nearly spherical with no constriction, as in the Race de Loriol, or cylindrical, with either a deep or slight constriction in the middle; with the two ends, or with one end alone, more or less pointed. The silk varies in fineness and quality, and in being nearly white, but of two tints, or yellow. Generally the colour of the silk is not strictly inherited: but in the chapter on Selection I shall give a curious account how, in the course of sixty-five generations, the number of yellow cocoons in one breed has been reduced in France from one hundred to thirty-five in the thousand. According to Robinet, the white race, called Sina, by careful selection during the last seventy-five years, "est arrivee a un tel etat de purete, qu'on ne voit pas un seul cocon jaune dans des millions de cocons blancs." (8/75. Robinet ibid pages 306-317.) Cocoons are sometimes formed, as is well known, entirely destitute of silk, which yet produce moths; unfortunately Mrs. Whitby was prevented by an accident from ascertaining whether this character would prove hereditary.

ADULT STAGE.

I can find no account of any constant difference in the moths of the most distinct races. Mrs. Whitby assured me that there was none in the several kinds bred by her; and I have received a similar statement from the eminent naturalist, M. de Quatrefages. Captain Hutton also says (8/76. 'Transact. Ent. Soc.' ut supra page 317.) that the moths of all kinds vary much in colour, but in nearly the same inconstant manner. Considering how much the cocoons in the several races differ, this fact is of interest, and may probably be accounted for on the same principle as the fluctuating variability of colour in the caterpillar, namely, that there has been no motive for selecting and perpetuating any particular variation.

The males of the wild Bombycidae "fly swiftly in the day-time and evening, but the females are usually very sluggish and inactive." (8/77. Stephen's Illustrations, 'Haustellata' volume 2 page 35. See also Capt. Hutton 'Transact. Ent. Soc.' ibid page 152.) In several moths of this family the females have abortive wings, but no instance is known of the males being incapable of flight, for in this case the species could hardly have been perpetuated. In the silk-moth both sexes have imperfect, crumpled wings, and are incapable of flight; but still there is a trace of the characteristic difference in the two sexes; for though, on comparing a number of males and females, I could detect no difference in the development of their wings, yet I was assured by Mrs. Whitby that the males of the moths bred by her used their wings more than the females, and could flutter downwards, though never upwards. She also states that, when the females first emerge from the cocoon, their wings are less expanded than those of the male. The degree of imperfection, however, in the wings varies much in different races and under different circumstances. M. Quatrefages (8/78. 'Etudes sur les Maladies du Ver a Soie' 1859 pages 304, 209.) says that he has seen a number of moths with their wings reduced to a third, fourth, or tenth part of their normal dimensions, and even to mere short straight stumps: "il me semble qu'il y a la un veritable arret de developpement partiel." On the other hand, he describes the female moths of the Andre Jean breed as having "leurs ailes larges et etalees. Un seul presente quelques courbures irregulieres et des plis anormaux." As moths and butterflies of all kinds reared from wild caterpillars under confinement often have crippled wings, the same cause, whatever it may be, has probably acted on silk-moths, but the disuse of their wings during so many generations has, it may be suspected, likewise come into play.

The moths of many breeds fail to glue their eggs to the surface on which they are laid (8/79. Quatrefages 'Etudes' etc. page 214.) but this proceeds, according to Capt. Hutton (8/80. 'Transact. Ent. Soc.' ut supra page 151.), merely from the glands of the ovipositor being weakened.

As with other long-domesticated animals, the instincts of the silk-moth have suffered. The caterpillars, when placed on a mulberry-tree, often commit the strange mistake of devouring the base of the leaf on which they are feeding, and consequently fall down; but they are capable, according to M. Robinet (8/81. 'Manuel de l'Educateur' etc. page 26.) of again crawling up the trunk. Even this capacity sometimes fails, for M. Martins (8/82. Godron 'De l'Espece' page 462.) placed some caterpillars on a tree, and those which fell were not able to remount and perished of hunger; they were even incapable of passing from leaf to leaf.

 

Some of the modifications which the silk-moth has undergone stand in correlation with one another. Thus, the eggs of the moths which produce white cocoons and of those which produce yellow cocoons differ slightly in tint. The abdominal feet, also, of the caterpillars which yield white cocoons are always white, whilst those which give yellow cocoons are invariably yellow. (8/83. Quatrefages 'Etudes' etc. pages 12, 209, 214.) We have seen that the caterpillars with dark tiger-like stripes produce moths which are more darkly shaded than other moths. It seems well established (8/84. Robinet 'Manuel' etc. page 303.) that in France the caterpillars of the races which produce white silk, and certain black caterpillars, have resisted, better than other races, the disease which has recently devastated the silk-districts. Lastly, the races differ constitutionally, for some do not succeed so well under a temperate climate as others; and a damp soil does not equally injure all the races. (8/85. Robinet ibid page 15.)]

From these various facts we learn that silk-moths, like the higher animals, vary greatly under long-continued domestication. We learn also the more important fact that variations may occur at various periods of life, and be inherited at a corresponding period. And finally we see that insects are amenable to the great principle of Selection.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39 
Рейтинг@Mail.ru