bannerbannerbanner
Секс с учеными: Половое размножение и другие загадки биологии

Алексей Алексенко
Секс с учеными: Половое размножение и другие загадки биологии

Глава вторая, в которой улитки дорого заплатили за свои глупости
«Двойная цена» полового размножения

Наша слоновья история начинается не с одинокого слона, а именно с пары, потому что у слонов так повелось, что для размножения слону надо встретить свою половинку. Среди рожденных в этом слоновьем семействе слонят примерно половину составят мальчики: они никаких слонят рожать не могут в принципе, их функция – просто любить слоних. Точно так же это устроено у подавляющего большинства животных. Вообразите теперь, что у слонов возникла одна из тех «адаптаций», о которых упомянул Дарвин: слоны-девочки нашли способ рожать без участия слонов-мальчиков, причем все их детишки тоже оказываются слонихами. Полезна ли такая адаптация? Еще как: коэффициент ее отбора будет равен не жалким 3﹪, а целым ста – ведь теперь все их потомки обретут способность рожать слонят, а не половина. Другими словами, эмансипированные слонихи будут размножаться вдвое эффективнее. Таким образом, за удовольствие заниматься любовью слоны платят огромную эволюционную цену, снижая эффективность своего размножения вдвое!

Совершенно ясно, что такое расточительство абсолютно невозможно в той картине природы, которая полтора столетия назад открылась Чарльзу Дарвину. Здравый смысл подсказывает, что любой слон, воробей, динозавр или рыба, которым за сотни миллионов лет удалось бы научиться не платить за секс двойную цену, должны были бы давным-давно завоевать планету и занять своим потомством все экологические ниши. Однако же это отчего-то не произошло – а значит, секс таит в себе несказанные преимущества, которых мы, в наших жалких попытках все упростить и свести к школьной арифметике, просто не видим.

Впрочем, тут хитрый читатель легко мог бы поймать автора на передергивании. Так ли мы хорошо понимаем быт слонов, чтобы быть уверенными в эволюционном преимуществе стада слоних-амазонок? Может быть, слонятам никак нельзя без папы и это сиротство обошлось бы им куда дороже, чем «двойная цена» секса?

Биологи-теоретики чуть меньше тяготеют к абстракциям, чем, к примеру, физики, но тоже этим грешат: все наши рассуждения относятся к неким «сферическим слонам в вакууме». Когда вы начинаете рисовать на листе бумаге схемы, желая разобраться в тонкостях полового размножения, вы и сами не заметите, как умные серые животные превратятся у вас в некие округлые мешки с генами. Половое размножение в этой модели будет выглядеть так: два мешка с генами слились в один, гены перемешались, потом один мешок опять разделился на два, со случайным набором генов в каждом. Здесь, конечно, не очень понятно, почему бы ему не разделиться сразу, без этого слияния-перемешивания, и именно в такой форме обдумывали эту проблему генетики и эволюционисты бо́льшую часть ХХ века. Но если вы замените эти мешки с генами обычной парой живых ворон, вопрос снимется сам собой. Если какая-то ворона-мама вздумает вывести птенцов без участия вороны-папы, ее ждет полное фиаско: птица умрет с голоду еще на стадии высиживания яиц, поскольку именно будущий отец в это время приносит ей еду, а если мама чудом выживет, то не сможет в одиночку выкормить птенцов. Другими словами, мутация к бесполости не принесет вороне – да и большинству других птиц – ровным счетом никакого эволюционного преимущества.


Я не уверен, что подобные спекуляции этически допустимы, однако такой мысленный эксперимент был бы еще нагляднее в случае человеческого общества. Будет ли обладать эволюционным преимуществом мутация к бесполому размножению у человека? Девушка, получившая в дар от природы способность беременеть просто так, без всякого внешнего повода, скорее всего, станет большой проблемой для медиков и/или социальных служб. Хотя, конечно, романтические фантазии о новом продвинутом разумном виде вроде «Славных Подруг» из романа братьев Стругацких «Улитка на склоне» тоже имеют право на существование.

Читатель, которого не шокируют такие рассуждения, может додумать все детали самостоятельно, а мы из деликатности вернемся к воронам. Их коллизию можно перевести на сухой язык эволюционной теории следующим образом: наличие двух родителей дает птенцу преимущество, значительно превосходящее стопроцентную плату за секс. Если вороний родитель всего один, у снесенного им яйца нет вообще никаких шансов превратиться в ворону и передать по эстафете свои гены. Но, с другой стороны, может быть и так, что плата за секс окажется даже больше «двойной цены»: добавим в уравнение, к примеру, каких-нибудь смертельно опасных паразитов, передающихся половым путем. А сколько – дополнительно к «двойной цене» – платят за секс цветковые растения, вынужденные обеспечивать дорогостоящим сладким нектаром сонмы насекомых-опылителей?

Таким образом, «двойная цена» – это, конечно, абстракция. Тем не менее мы не можем бесконечно отмахиваться от общего парадокса частными примерами, сколько бы таких примеров ни было у нас в запасе. Секс – универсальное свойство сложных организмов на этой планете. Даже если многим из них он ничем не вредит, а только помогает, это не снимает большого вопроса: «Какое общее свойство жизни подтолкнуло всех нас на этот путь?» На самом деле здесь есть два разных вопроса. Первый из них мы неявно задали, приводя примеры с воронами и девушками: «Почему среди существ, размножающихся половым путем, не распространяются триумфально мутации к бесполости?» Из наших примеров следовало, что для некоторых из них такая мутация не сулит никаких выгод. С этим никто особенно и не спорит. При этом у других организмов, и имя им легион, подобные мутации очень даже случаются, и бесполые популяции оказываются вполне успешными (примеры мы рассмотрим чуть позже).

Но есть и второй вопрос, на который придется ответить, если мы хотим узнать, откуда на планете взялось половое размножение. Как этот самый секс мог возникнуть в первоначально бесполой популяции? Почему эксперимент не был немедленно задушен в зародыше и ранние сексуальные экспериментаторы не оказались вытеснены в небытие своими бесполыми родственниками, а, наоборот, завоевали мир? Здесь не отделаешься ссылкой на социальные установления вроде совместного выкармливания птенцов или планирования семьи, которые наверняка возникли существенно позже. Природа не загадывает наперед: чтобы выжить в неопределенном будущем, в первую очередь совершенно необходимо выжить здесь и сейчас, а там видно будет. Очевидно, что тем, кто первым добровольно снизил эффективность размножения вдвое, выжить было ох как непросто.

Если почаще вставлять в свою речь слово «очевидно» и для пущей убедительности делать широкие движения руками, еще можно как-то завоевать доверие дилетантов, но с учеными такое не проходит: им нужны строгие доказательства. В том, что касается «двойной цены» секса, такое доказательство предложил английский биолог Джон Мейнард Смит (1920–2004). С юношеских лет у Мейнарда Смита было два больших увлечения: теория эволюции и марксизм. Последнее привело его в ряды Коммунистической партии Великобритании, а первое – в лабораторию Джона Холдейна (1892–1964), тоже коммуниста, который еще появится в нашем повествовании. Возможно, юный Мейнард Смит питал некие иллюзии о возможности обоснования марксистского учения на базе эволюционной теории – об этом можно судить по тому, что позже он, согласно некоторым свидетельствам, назвал подобные фантазии «бесплодными», а какой смысл рассуждать о фантазиях, если сам никогда их не фантазировал? Разочарование Мейнарда Смита в коммунизме наступило в 1956 году, после подавления советскими войсками восстания в Будапеште. А уже в 1960-х Мейнард Смит опубликовал первые работы по теоретической биологии, в которых применил математическую теорию игр к эволюционным процессам. В 1970-х именно он первым произнес слова «двойная цена» в отношении секса – точнее, он говорил о «двойной цене самцов». И не просто произнес, а построил модель, доказывающую, что эту самую «двойную цену» действительно должна платить популяция организмов, по каким-то причинам вздумавшая практиковать половое размножение.

При всей неотразимой убедительности теории Мейнарда Смита всем очень хотелось бы подтвердить ее экспериментально: найти какое-нибудь живое существо, способное к половому размножению, но умеющее обходиться и без него, чтобы в точности подсчитать ущерб, наносимый сексом. Такую попытку предпринял Кертис Лайвли из Университета Индианы. У Лайвли, как и у Мейнарда Смита, два главных увлечения. Первое, как можно догадаться, – проблема происхождения и биологического смысла полового размножения. А второе – миниатюрная улитка Potamopyrgus antipodarum (в приблизительном переводе «речная башенка с другой стороны Земли»). Именно эта улитка, с особенностями жизни которой Лайвли познакомился в 1980-х годах, во время работы в Университете Кентербери в городе Крайстчерче, Новая Зеландия, дала ему возможность экспериментально проверить целый ряд гипотез, пытавшихся объяснить распространенность полового размножения среди всевозможных форм земной жизни.

В 2016 году дело дошло и до модели «двойной цены» Мейнарда Смита. Большинство «речных башенок» составляют популяции самок, рожденных другими самками в результате партеногенеза (так по-научному называется «непорочное зачатие», когда существо женского пола воспроизводит себе подобных без участия самца). Однако некоторая часть популяций улиток держится за традиционный уклад, то есть использует для размножения самцов. Вникнув в повседневную жизнь разных популяций улиток, Лайвли не только смог убедиться, что партеногенез дает преимущество в скорости размножения, но и оценил это преимущество количественно. Оно оказалось значительно меньше двух, что, конечно, доставило доктору Лайвли некоторое разочарование, прежде чем он догадался, что и у Мейнарда Смита все не так просто. Согласно модели, двойное преимущество возникает только в начальный момент, когда самые первые особи приобретают способность к бесполому размножению среди популяции, размножающейся половым путем, а популяции новозеландских улиток жили вполне стабильно в окружении себе подобных. Тогда Лайвли применил некую математику, чтобы пересчитать данные на воображаемый момент «первой мутации к бесполости», и результат был впечатляющим: коэффициент в точности равнялся двум.

 

Итак, «двойную цену» за секс приходится платить как в теории, так и на практике. Если, несмотря на это, идея полового размножения была с таким восторгом поддержана земной биосферой, это значит, что секс обладает какими-то преимуществами, дающими возможность выиграть в эволюционной гонке даже при такой огромной форе. О том, что это за преимущества, в ХХ веке спорили самые умные биологи человечества. Попробуем разобраться, что интересного они смогли предложить.

БИБЛИОГРАФИЯ

Colegrave N. The Evolutionary Success of Sex. Science & Society Series on Sex and Science. EMBO Reports. 2012. 13(9): 774–778.

Gibson A. K., Delph L. F., Lively C. M. The Two-Fold Cost of Sex: Experimental Evidence from a Natural System. Evolution Letters. 2017. 1(1): 6–15.

Meirmans S., Meirmans P. G., Kirkendall L. R. The Costs of Sex: Facing Real-World Complexities. The Quarterly Review of Biology. 2012. 87: 19–40.

Ridley M. Evolution. 2nd ed. Oxford: Blackwell, 1996.

Smith J. M. The Evolution of Sex. Cambridge: Cambridge University Press, 1978. (Смит Дж. М. Эволюция полового размножения / Пер. А. Д. Базыкина. – М.: Мир, 1981.)

Smith J. M. The Origin and Maintenance of Sex. In: G. C. Williams, ed. Chicago: Group Selection; Aldine Atherton, 1971. Р. 163–175.

Глава третья, в которой рассмотрена роль секса в жизни Льва Николаевича Толстого
Рекомбинация

В предыдущей главе у нас промелькнуло следующее описание полового размножения, если отвлечься от всех сложностей и свести многообразие жизни к удобной абстракции: «два мешка с генами слились в один, гены перемешались, потом один мешок опять разделился на два, со случайным набором генов в каждом». Хватило всего пары строк, и если уж в таком небогатом материале приходится искать разгадку преимуществ секса, то вполне логично ухватиться за это самое перемешивание генов.

Занудство требует отметить, что «мешки с генами» существуют разве что у некоторых простейших (для тех, кто в теме: классическим мешком с генами является макронуклеус инфузорий, хотя именно он-то в сексе никак не участвует). Такие абстракции еще были простительны для первых биологов, размышлявших о смысле секса, потому что тогда о генах не знали толком ничего: это что-то такое внутри, что наследуется и определяет разные признаки. С тех пор стало ясно, что гены – это на самом деле отдельные участки большой молекулы ДНК, которая образует хромосому. Хромосом у организма может быть несколько, и при половом размножении они действительно случайно перемешиваются, а гены, находящиеся в одной хромосоме, часто передаются потомкам вместе – они, как выражаются генетики, сцеплены.

Однако – и это серьезный аргумент в пользу того, что мы наконец нащупали что-то важное, – природа, похоже, специально позаботилась о том, чтобы абстракция «случайного перемешивания» как можно точнее описывала реальность. Любой генетик-экспериментатор, который когда-нибудь скрещивал разные организмы, подтвердит вам, что опытным путем обнаружить сцепление генов не так уж просто. Даже если гены находятся на одной хромосоме, но достаточно далеко друг от друга, в потомстве они нередко ведут себя так, как будто их наугад вынимали из пресловутого мешка. За этот эффект отвечает специальный механизм, который называют рекомбинацией. С подробностями о том, как это происходит, придется подождать пару десятков глав, но этих подробностей не знали и классики, идеи которых мы сейчас пытаемся понять. Так что начнем с простых примеров – а именно перейдем наконец к обещанной теме этой главы, Льву Николаевичу Толстому.

Идея бесцеремонно использовать великого писателя для иллюстрации биологических идей принадлежит не мне – к ней в далеком 1979 году прибегал мой преподаватель, несравненный Алексей Павлович Акифьев (1938–2007). Именно с этого примера он начинал свой рассказ о генетической рекомбинации и кроссинговере. Среди прочих влияний Алексея Павловича на мое мировоззрение следует отметить также его присказку «Сложность жизни неизмерима», которой он отвечал на вопросы студентов, когда не знал точного ответа.

Итак, у классика русской литературы было тринадцать детей, из них восемь достигли зрелости, и к началу XXI столетия они произвели около трех сотен потомков. Эти потомки проживают в России, Швеции, Германии, Франции и США, среди них есть ученые, бизнесмены, писатели и политики. Некоторые носят бороды. Но вот чего среди нет, так это ни одной копии Льва Николаевича Толстого. И причина этого досадного факта именно в рекомбинации.

Рекомбинация – это то, что происходит в результате секса. В общих чертах процесс выглядит так: две клетки, мамина и папина, встречаются и сливаются друг с другом. Затем сливаются их ядра. На этой стадии мамины и папины хромосомы в клетке перемешаны, но никак не взаимодействуют между собой. Однако перед тем, как дать начало следующему поколению, происходит еще кое-что важное: похожие (по-научному выражаясь, гомологичные) хромосомы папы и мамы находят друг друга, слипаются по всей длине, а затем разрываются в одинаковых местах и соединяются крест-накрест. Такое событие – результат рекомбинации двух хромосом – называется кроссинговером. К концу этого рандеву никаких папиных и маминых хромосом в клетке больше нет, а есть мозаичные – состоящие из маминых и папиных кусочков. В результате два гена, проживавшие на одной хромосоме, могут расстаться и продолжить свой жизненный путь на разных.

Рекомбинацию наблюдают генетики, когда скрещивают разные организмы. Началось все это еще при Грегоре Менделе (1822–1884). Вероятно, все помнят большую таблицу из школьного учебника, где расписано, что случится, если скрестить растение гороха с желтыми и гладкими семенами с растением, у которого семена зеленые и морщинистые. Многим взрослым людям иногда снятся кошмары, в которых им пришлось вернуться в школьный класс, и из милосердия к их психологической травме мы не станем здесь еще раз описывать менделевское двухфакторное скрещивание. Для нашей истории важно, что в результате во втором поколении появится горох, не похожий ни на одного из родителей, – зеленый и гладкий, а также желтый и морщинистый. Это значит, что гены желтизны и гладкости у потомков перемешались. Конкретно эти два гена так хорошо перемешались у Менделя просто потому, что они на разных хромосомах. Но вот гены окраски цветков и формы семян у гороха находятся на одной и той же хромосоме – на первой, однако Мендель этого не заметил: признаки все равно наследовались независимо. Генетическое сцепление – то есть отклонение наследования от законов Менделя из-за того, что некоторые гены физически объединены на одной хромосоме, – было обнаружено у гороха только в начале ХХ века. И это именно потому, что генетическая рекомбинация очень хорошо умеет разрушать сцепление генов и помогает им наследоваться «как бы независимо», вводя в заблуждение даже столь въедливых экспериментаторов, как монах-августинец из Брно. Скажем больше: она делает это так хорошо, как будто специально для того и предназначена. Неудивительно, что когда генетики впервые задумались о смысле секса, то сразу же заподозрили, что перетасовка генетических признаков и есть самое главное, ради чего все затевается.

Процесс, в результате которого гены родителей перемешиваются и расходятся к разным потомкам, называется мейоз, и он бывает далеко не у всех организмов на планете: бактерии, к примеру, ничего такого делать не умеют (хотя рекомбинация у них тоже бывает, но при совершенно других обстоятельствах). Однако все, кто умеет, – а это все организмы, у которых в клетках есть ядро, то есть эукариоты, – проделывают это на удивление похожим образом. Инфузории, елки, жирафы, пауки, грибы и папоротники отличаются друг от друга лишь деталями процесса. Краткое содержание мейоза таково: в диплоидной клетке родительские хромосомы меняются участками, а потом расходятся по разным клеткам, которые вновь становятся гаплоидными.

Тут надо слегка задержаться, чтобы объяснить сложные слова. Гаплоидными – то есть несущими одинарный набор хромосом – были клетки мамы и папы, которые слились, то есть гаметы, а также клетки, получившиеся в результате мейоза. А вот клетка, получившаяся при слиянии маминой и папиной, – она называется зиготой – диплоидная, потому что каждая хромосома у нее представлена в двух копиях. Так это и продолжается без конца – гаплоид, диплоид, опять гаплоид, и так далее. Но дело в том, что разные организмы привыкли делать паузу в определенных точках этого цикла. Одним нравится после слияния клеток как можно скорее снова стать гаплоидом. Таким образом, бо́льшую часть своей интересной жизни эти существа проводят с единственным набором хромосом, в которых перемешаны папины и мамины гены. Так живут, к примеру, многие грибы. Другие – например, плауны – предпочитают прервать этот цикл два раза: после слияния ядер и после уменьшения числа хромосом. В каждой из пауз они занимаются своими интересными делами. Таким образом, получается две совершенно разные жизненные формы плауна, гаметофит и спорофит, кардинально различающиеся образом жизни. Гаметофит с одиночным набором хромосом (то есть гаплоидный) годами живет под землей, в тесном союзе с грибами. А диплоидный спорофит – симпатичное наземное растение.

Есть и причудливые варианты. Паразит кукурузы гриб пузырчатая головня самую интересную и долгую часть своей жизни проводит в фазе после слияния клеток, но до слияния ядер – по каким-то причинам это показалось ему удобным. Так и живет он с мамиными и папиными ядрами в гифах грибницы неопределенно долго, а потом ядра сливаются, и цикл быстро завершается образованием гаплоидных (то есть имеющих одинарный набор хромосом) спор.

Ну и, наконец, самые важные и заметные живые существа – высшие животные и растения – делают паузу в своем половом цикле после слияния ядер. Таким образом, всю свою жизнь они проводят с двумя наборами хромосом: один от папы, один от мамы. За это их называют диплоидными. Затем происходит перетасовка генов (кроссинговер), образуются половые клетки, вскоре они сливаются, и цикл начинается вновь.

Именно так все и происходило у Льва Николаевича Толстого. Каждый сперматозоид Льва Николаевича нес в себе ровно половину его диплоидного генома. За всю его жизнь тринадцать сперматозоидов слились с тринадцатью яйцеклетками его супруги, так что следующему поколению перешло тринадцать половинок генома писателя.

Затем у его детей произошло то, что мы описали чуть выше: в некий важный момент их жизни хромосомы Льва Николаевича и Софьи Андреевны прильнули друг к другу по всей длине и обменялись своими участками. Папины и мамины гены перетасовались друг с другом, образовав совсем не те комбинации, которые были у их родителей. Кроссинговер повторялся в каждом новом поколении Толстых с добавлением теперь уже генов их жен и мужей. Таким образом, даже если нам вздумается скрещивать потомков Толстого между собой – а один такой брак между правнуками в действительности произошел, – восстановить ту единственную комбинацию генов, которая позволяет написать «Войну и мир», а следом за ней и сказку «Лев и собачка», просто невозможно.

Итак, половое размножение, которому классик отдал дань в своей жизни и творчестве, приводит к тому, что комбинации его генов в потомстве не сохраняются. С одной стороны, это обидно, так как разрушаются удачные комбинации. С другой, видимо, полезно: еще не факт, что Лев Николаевич был бы приспособлен к преподаванию итальянского языка, разведению оленей в Швеции или ведению бизнеса в Калифорнии, а в его потомках такие качества присутствуют. Таким образом, половое размножение создает новые комбинации генов, готовые к завоеванию новых экологических ниш. Среди потомков писателя есть даже господин Петр Толстой, депутат и публицист. Кто мог предсказать, что гены не кого-нибудь, а Льва Толстого можно перетасовать со столь ошеломляющим результатом.

Вообразим теперь, что Лев Николаевич Толстой, находясь под впечатлением от им же написанной «Крейцеровой сонаты», изыскал способ избавиться от постыдной тяги к сексу и научился размножаться почкованием. Точных копий себя самого у него все равно не получилось бы: сейчас уже точно известно, что каждый новорожденный человеческий младенец несет в себе в среднем около семидесяти новых мутаций. Однако интуитивно ясно, что эти маленькие Львовичи все же были бы гораздо сильнее похожи на своего великого родителя, чем потомки их с Софьей Андреевной брака. Из двадцати с лишним тысяч человеческих генов мутагенез за одно поколение способен изменить лишь несколько десятков; в то же время секс и кроссинговер позволяют создать и опробовать в действии новые ансамбли из абсолютно всех генов генома.

 


Итак, все это нужно для того, чтобы составлять новые комбинации из генов на тот случай, если потомкам придется жить при какой-нибудь новой формации, будь то в палеонтологическом или общественно-политическом смысле? Надо признать, что именно такое объяснение первым пришло на ум ученым. Представление о том, что секс нужен, чтобы опробовать всё новые и новые комбинации генов, заворожило генетиков буквально с того момента, как они вообще что-то узнали о генах. Более того, никто не мешал строить гипотезы о роли полового размножения еще до того, как гены вышли на авансцену биологической науки. Чарльз Дарвин, к примеру, о генах еще ничего не знал. Зато он знал о том, что если родители состоят в близком родстве, то потомки нередко оказываются слабыми и больными. С другой стороны, от брака неродственных родителей – например, двух совершенно разных пород собак или двух людей из разных регионов, стран или даже частей света – детишки нередко получаются сильные, ловкие и здоровые. Такой всплеск жизненной силы у отдаленных гибридов давно известен селекционерам (то есть тем, кто занимается искусственным отбором домашних животных и растений, а не теоретизирует о естественном отборе в природе) и называется гетерозисом. Разумеется, если потомство обладает повышенной жизнеспособностью, оно с большей вероятностью передаст родительские признаки дальше по цепочке, так что немедленная выгода от скрещивания не подлежит сомнению. Это рассуждение, видимо, убедило Дарвина в том, что в сексе нет никакого парадокса.

Наше уважение к огромному вкладу Дарвина в биологию совершенно не требует думать, что он, обогнав современную ему науку на полстолетия, еще в XIX веке все понимал правильно. Напротив, величие Дарвина в том, что он, фактически еще ничего не понимая, каким-то образом увидел самое главное. В случае гибридного гетерозиса непонимание было налицо: это явление связано не с сексом и рекомбинацией, а с диплоидностью высших организмов. Напомню, что в их клетках есть два набора хромосом, по одному от каждого из родителей. Когда родители не родственники и совсем не похожи друг на друга, их версии одного и того же гена, скорее всего, будут различны (это называется гетерозиготностью). А значит, более сильная и здоровая версия способна взять на себя заботу о благосостоянии организма, подменяя версию-инвалида. Собственно, пользоваться этим бонусом можно независимо от секса и диплоидности: к примеру, грибы, в том числе упомянутая выше пузырчатая головня, имеют все преимущества такой диверсификации, просто сочетая в своих гифах два типа родительских клеточных ядер. Конечно, ни о чем подобном Дарвин узнать еще никак не мог.

И все же из этого кажущегося тупика ведет некая тропинка к пониманию. Гетерозис происходит потому, что гены родителей могут быть хуже или лучше, то есть они различны. А различаются они благодаря мутациям. Именно из-за разных мутаций гены отставного поручика Толстого и девицы Софьи Берс изначально были неодинаковы, так что родители хотя бы могли отличать друг от друга своих сыновей и дочерей. Разные мутации добавлялись в этот коктейль и перемешивались в последующих поколениях Толстых, обеспечивая их потомству житейский и репродуктивный успех. В мутациях имело смысл поискать разгадку тайны секса, чем ученые и занимались весь следующий век.

БИБЛИОГРАФИЯ

Басинский П. Лев Толстой и его семья. См.: https://arzamas.academy/courses/47/1

Бородин П. М. Генетическая рекомбинация в свете эволюции // Природа. 2007. № 1. С. 14–22.

Гузева А. Чем занимаются потомки Льва Толстого. См.: https://rbth.ru/read/1758tolstoy-potomki-nashi-dni

Ellis T. H., Turner L., Hellens R. P., et al. Linkage Maps in Pea. Genetics. 130(3): 649–663.

Labroo M. R., Studer A. J., Rutkoski J. E. Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review. Frontiers in Genetics. 2021. 12: 643–761.

Pulst S. M. Genetic Linkage Analysis. Archives of Neurology. 1999. 56(6): 667–672.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27 
Рейтинг@Mail.ru