bannerbannerbanner
The Wonders of Arithmetic from Pierre Simon de Fermat

Youri Veniaminovich Kraskov
The Wonders of Arithmetic from Pierre Simon de Fermat

The clarification in this matter begins with the FLT, which states that the sum of two power integer with the same power index greater than the second, cannot be an integer with the same power index. In this sense, this theorem is not at all any puzzle, but one of the basic propositions that unequivocally (!) regulates the addition of integer powers, therefore, it is of fundamental importance for science.26 The fact that the FLT has not yet been proven, indicates only the state of current science, which is falling apart right before our eyes. Science cannot even imagine that if the proof from Fermat himself came to us, it would have been long ago taught in secondary school.

Many people of course, will perceive it as a fairy tale, but only the completely blind ones may not notice that behind all this absurd and awkward history with the FLT, clearly and openly ears of the unholy stick so out, that he was enough to deprive human civilization of access to Fermat's works on arithmetic, so it immediately turned out to be completely disoriented. Instead of developing science they began being vigorously to destroy it and even with very good intentions. But a special zeal in people appears when they have the material stimulus.

Pic. 29. Andrew Beal


Texas entrepreneur Andrew Beal27 had proposed his conjecture, the proof of which allegedly could lead to a very simple proof of the FLT. Since for the solution of this problem it was proposed first $ 5 thousand, then $ 100 thousand, and from 2013 – a whole million, then naturally it appeared many willing people who began diligently this task to solve. However, in the conditions when arithmetic has long ceased to be the primary basic of all knowledge and still does not know, what is a number, everything turned upside down i.e. one amateur enthusiast was able to set on the ears the whole official science and so, that it had in fact already acknowledged the experience of Baron Munchhausen lifting himself up, taking himself by his collar, wherewith science did not even try at least to conceal its own insolvency (see pt. 4.5).

By working in the intense and tireless search for the FLT proof, it has never even occurred to anyone to search for Fermat’s manuscripts with layouts and calculations, without which he could not do28. However, again from Singh’s book we learn that such an idea came to Euler who asked his friend living in Lausanne (a city not far from Toulouse) to look for at least a little piece of paper with Fermat’s instructions to the FLT proof. But nothing was found, however, they were looking for what we do not really need! It was necessary to look for a cache!!!

Here is the new puzzle, which is not easier! What else kind of cache? … Oh yes! The fact is that only those Fermat's works remained, which he itself had already prepared for publication since otherwise they would hardly have been published. But all the working manuscripts for some reason has disappeared. It looks very strange and it is possible that they can still be kept in the cache, which Fermat has equipped to store the material evidence necessary for him to work as a senator and high-ranking judge. It was quite reasonable to keep calculations and proofs there, since Fermat’s scientific achievements could significantly damage his main work if they were made public before the establishment of the French Academy of Sciences.29

If we could somehow look into this cache, what will we see there? To begin with, let's try to find some simple tasks there. For example, the one that Fermat could offer today for secondary school students:


Divide the number xn−1 by the number x−1, or the number x2n−1 by

the number x±1, or the number x2n+1+1 by the number x+1.


It is obvious that students with the knowledge of solving such a task will be simply a head over the current students who are trained in the methods of determining the divisibility by only some small numbers. But if they else know a couple of the Fermat's theorems, they can easily solve also the more difficult problem:


Find two pairs of squares, each of which adds up to the same number

in the seventh power, for example,

2217=1511140542+539693052=82736654 2+1374874152


Compared to the previous task where calculations are not needed at all, in solving this task, even with a computer calculator you have to tinker with half an hour to achieve a result, while apart from understanding the essence of the problem solution, you need to show a fair amount of patience, perseverance and attention. And who understands the essence of the solution, will be able to find other solutions to this problem.30

 

Of course, such tasks can cause a real shock to today's students and especially to their parents who will even demand not to “dry the brains” of children. But if children's brains are not filled with elementary knowledge and not trained by solving the corresponding tasks, they will wither by themselves. This is proven by the statistics of the steady decline in today's students IQ compared with their predecessors. Really in fact, the above tasks are only a warm-up for the young generation, but children could produce a real furor for mathematicians offering them some simple Fermat's theorems about magic numbers (see Pt. 4.4.). And this is else a big question, could these theorems being solved by today's professors or will they again need some three hundred years and the story with the FLT will repeat? However, the chances of them in contrast to previous times, are very high because magic numbers are a direct consequence of the same “truly amazing” proof of the FLT, about the existence of which we have direct written evidence from Fermat himself.

Reconstruction of this proof was briefly published as early as 2008 [30], but the unholy was on the alert and presented this event so, that modern science disoriented by the false notion that the problem was solved long ago, has not paid on this any attention. However, all secret sooner or later becomes clear and the decisive word in spite of everything, still remains for science. The question now is only when this science will finally awaken and comes to his senses. The longer it will be in a blissful state of oblivion, the sooner the terrible events will come that already now beginning to shake our world like never before.

In order for science to win a well-deserved victory over the gloom of ignorance and mass disinformation, which are triumphant today, it needs very little. For the beginning it is necessary simply to search for the very cache, in which such secrets of science are hidden, that have not lost their relevance for three and a half centuries.31 Even if the papers found in the cache will be unreadable, the very fact of the existence of the cache will be evidence that science is moving in the right direction and the results will not be long in coming.

We already did something in this direction when we restored the FLT recording in the margins of Diophantus 'Arithmetic' (see pic. 5 and the translation in the end of Pt. 1). Now, by all means, we need to get a complete picture of the whole sequence of events that led to the discovery of the FLT in its final wording published in 1670. It will not be easily at all, but since we got involved in this story, now we have nowhere to retreat and we will strain all our forces to achieve the aim. Fortunately, for this we have all the opportunities granted to us from above to get the coveted access to the cache of the Toulousean senator.

3. What is a Number?

3.1. Definition the Notion of Number

The question about the essence the notion of number at all times was for scientists the thing-in-itself. They of course, understood that they could not distinctly answer this question as well as they could not admit in this since this would have a bad effect on maintaining the prestige of science. What is the problem here? The fact is that in all cases a number must be obtained from other numbers, otherwise it cannot be perceived as a number. To understand for example, the number 365, you need to add three hundred with six tens and five units. It follows that the notion of a number does not decompose into components that are qualitatively different from it and in such a way as usual for science i.e. through analysis, it is not possible to penetrate the secret of its essence.

Scientists having a question about the nature of numbers immediately ran into this problem and came to the conclusion that a general definition the notion of number simply does not exist. But not a such was Pierre Fermat who approached this problem from other side. He asked: “Where does the notion of number come from?” And came to the conclusion that his predecessors were the notions “more”, “less” and “equal” as the comparisons’ results of some properties inherent to different objects [30].

If different objects are compared in some property with the same object then such a notion as a measurement appears, so perhaps is the essence of a number possible revealed through a measurement? However, it is not so. In relation to the measurement, the number is primary i.e. if there are no numbers, there can be no also measurements. Understanding the essence of the number becomes possible only after establishing the number is inextricably connect with the notion of “function”.

But this notion is not difficult to determine:

A function is a given sequence of actions with its arguments.

In turn, actions cannot exist on their own i.e. in the composition of the function in addition to them must include the components, with which these actions are performed. These components are called function arguments. From here follows a general definition the notion of number:

Number is an objective reality existing as a countable quantity, which consists of function arguments and actions between them.

For example, a+b+c=d where a, b, c are arguments, d is a countable quantity or the number value.32

To understand what a gap separates Pierre Fermat from the rest of the science’s world, it is enough to compare this simple definition with the understanding existing in today's science [13, 29]. But understanding clearly presenting in the scientific works of Fermat, allowed him still in those distant times to achieve results that for other scientists were either fraught with extreme difficulties or even unattainable. It may be given also the broader definition the notion of number, namely:

A number is a kind of data represented as a function.

This extended definition the notion of number goes beyond frameworks mathematics; therefore, it can be called as general one and the previous definition as mathematical. In this second definition, it is necessary to clarify the essence the notion of “data”, however, for modern science this question is no less difficult than the question about the essence of the notion a number.33

From the general definition the notion of number follows the truth of the famous Pythagoras' statement that everything existing can be reflected as a number. Indeed, if a number is a special kind of information, this statement very bold at that time, was not only justified, but also confirmed by the modern practice of its use on computers where three well-known methods of representing data are implemented: numerical (or digitized), symbolic (or textual) and analog (images, sound, and video). All three methods exist simultaneously.

Pic. 30. Pythagoras



A strikingly bold statement even for our time that thinking is an unconscious process of computations, have been expressed in the 17th century by Gottfried Leibniz. Here, thinking is obviously understood as the process of data processing, which in all cases can be represented as numbers. Then it is clear how computations appear, but understanding of the essence of this process in modern science is so far lacking.34

Pic. 31. Gottfried Leibniz



All definitions of a number have one common basis:

Numbers exist objectively in the sense that they are present in the laws of the world around us, which can be known only through numbers.

From the school bench everyone will learn about numbers from the childish counting: one, two, three, four, five etc. Only the Lord knows where did this counting come from. However, there were attempts to explain its origin using axioms, but the origin of them is as incomprehensible as the counting. Rather, it looks like a certain imitation of the Euclid's "Elements" to add to knowledge the image of science and the appearance of solidity and fundamentality.

 

The situation is completely different when there is a mathematical definition the essence of a number. Then for a more complete understanding of it, both axioms and a countable quantity become a necessity. Indeed, this definition to the essence of a number includes arguments, actions and a countable quantity. But arguments are also numbers and they should be presented not specifically each of them, but by default i.e. in the form of a generally accepted and unchanged function, which is called the number system, however it no way could to appear without such a notion as a count. Now, axioms turn out to be very appositely and without them a count may be got only from aliens. In reality it was namely so happened since such sources of knowledge as the Euclid's “Elements” or the Diophantus' “Arithmetic” were clearly created not by our, but by a completely different civilization.35

If axioms regulate the count, then they are primary in relation to it. However, there is no need to determine their essence through the introduction of new notions because the meaning of any axioms is precisely in their primacy i.e., they are always essentially the boundaries of knowledge. Thus, axioms receive an even more fundamental status, than until now when they were limited only to the foundation of any separate system. In particular, the system of axioms, developed by the Italian mathematician Giuseppe Peano, very closely correspond to the solution of the problem for constructing a counting system although this main purpose was not explained apparently with a hint on justification the essence the notion of number. The scientific community perceived them only as a kind of “formalization of arithmetic” completely not noticing that these axioms in no way reflect the essence of numbers, but only create the basis for their presentation by default i.e. through a count.

If the main content of axioms is to determine the boundaries of knowledge related to generally accepted methods of representing of numbers, then they should be built both from the definition the essence of the notion of number and in order to ensure the strength and stability of the whole science's building. Until now, due to the lack of such an understanding of the ways of building the foundations of knowledge, the question about the essence of numbers has never even been asked, but only complicated and confused.

Pic. 32. Giuseppe Peano



However, now when it becomes clearer and without any special difficulties, all science can receive a new and very powerful impetus for its development. And then namely on such a solid basis, science acquires the ability to overcome with an incredible ease such complex obstacles, which in the old days, when there was no understanding the essence of numbers, they seemed to science as completely impregnable fortresses36.

3.2. Axioms of Arithmetic

3.2.1. Axioms of a Count

This path was first paved at the end of the 19th century by Peano axioms.37 We will make changes to them based on our understanding the essence of the number.

Axiom 1. A number is natural if it is added of units.38

Axiom 2. The unit is the initial natural number.

Axiom 3. All natural numbers form an infinite row, in which each

following number is formed by adding unit to the previous number.

Axiom 4. The unit does not follow any natural number.

Axiom 5. If some proposition is proven for unit (the beginning of

induction) and if from the assumption that it is true for a natural

number N, it follows that it is also true for a natural number

following N (induction hypothesis), then this sentence will be true

for all natural numbers.

Axiom 6. In addition to natural numbers, there can exist another

numbers derived from them, but only in the case if they possess all

without exception the basic properties of natural numbers.

The first axiom is a direct consequence from definition the essence of number, so Peano simply could not have it. Now this first axiom conveys the meaning of defining the notion of number to all another axiom. The second, fourth, and fifth axioms are preserved as in Peano version almost unchanged, but the fourth axiom of Peano is completely removed from this new system as redundant.

The second axiom has the same meaning as the first one in the Peano list, but is being specified in order to become a consequence of the new first axiom.

The third axiom is the new wording of Peano's second axiom. The notion of the natural row is given here more simply than by Peano where you need to guess about it through the notion of the “next” number. The fourth axiom is exactly the same as the third axiom of Peano.

The fifth axiom is the same as by Peano, which is considered the main result of the entire system. In fact, this axiom is the formulation the method of induction, which is very valuable for science and in this case allows to justify and build a count system. However, a count is present in one or another form not only in natural numbers, but also in any other numbers, therefore one more final axiom is needed.

The sixth axiom extends the basic properties of natural numbers to any numbers derived from them because if it turns out that any quantities obtained by calculations from natural numbers, contradict their basic properties, then these quantities cannot belong to the category of numbers.

Now arithmetic gets all the prerequisites in order to have the status the most fundamental of all scientific disciplines. From the point of view the essence of a count everything becomes much simpler and more understandable than until now. On the basis of this updated system of axioms there is no need to “create” natural numbers one after another and then “prove” the action of addition and multiplication for the initial numbers. Now it’s enough just to give names to these initial numbers within the framework of the generally accepted number system.

If this system is decimal, then the symbols from 0 to 9 should receive the status of the initial numbers composed of units in particular: the number “one” is denoted as 1=1, the number “two” is denoted as 2=1+1, the number “ three ” as 3=1+1+1 etc. up to the number nine. Numbers after 9 and up to 99 adding up from tens and ones for example, 23=(10+10)+(1+1+1) and get the corresponding names: ten, eleven, twelve … ninety-nine. Numbers after 99 are made up of hundreds, tens and units, etc. Thus, the names of only the initial numbers must be preliminarily counted from units. All other numbers are named so that their quantity can be counted using only the initial numbers.39

3.2.2. Axioms of Actions

All arithmetic actions are components of the definition the essence of the number. In a compact form they are presented as follows:

1. Addition: n=(1+1…)+(1+1+1…)=(1+1+1+1+1…)

2. Multiplication: a+a+a+…+a=a×b=c

3. Exponentiation: a×a×a×…×a=ab=c

4. Subtraction: a+b=c → b=c−a

5. Division: a×b=c → b=c:a

6. Logarithm: ab=c → b=logac

Hence, necessary definitions can be formulated in the form of axioms.

Axiom 1. The action of adding several numbers (summands) is their

association into one number (sum).

Axiom 2. All arithmetic actions are either addition or derived from

addition.

Axiom 3. There are direct and inverse arithmetic actions.

Axiom 4. Direct actions are varieties of addition. Besides the addition

itself, to them also relate multiplication and exponentiation.

Axiom 5. Inverse actions are the calculation of function arguments.

These include subtraction, division and logarithm.

Axiom 6. There aren’t any other actions with numbers except for

combinations of six arithmetic actions.40

26This is evident at least from the fact, in what a powerful impetus for the development of science were embodied countless attempts to prove the FLT. In addition, the FLT proof, obtained by Fermat, opens the way to solving the Pythagorean equation in a new way (see pt. 4.3) and magic numbers like a+b-c=a2+b2-c2 (see pt. 4.4).
27In the Russian-language section of Wikipedia, this topic is titled "Гипотеза Била". But since the author’s name is in the original Andrew Beal, we will use the name of the “Гипотеза Биэла” to avoid confusion between the names of Beal (Биэл) and Bill (Бил).
28In a letter from Fermat to Mersenne from 06/15/1641 the following is reported: “I try to satisfy Mr. de Frenicle’s curiosity as completely as possible … However, he asked me to send a solution to one question, which I postpone until I return to Toulouse, since I am now in the village where I needed would be a lot of time to redo what I wrote on this subject and what I left in my cabinet” [9, 36]. This letter is a direct evidence that Fermat in his scientific activities could not do without his working recordings, which, judging by the documents reached us, were very voluminous and could hardly have been kept with him on various trips.
29If Fermat would live to the time when the Academy of Sciences was established and would become an academician then in this case at first, he would publish only problem statements and only after a sufficiently long time, the main essence of their solution. Otherwise, it would seem that these tasks are too simple to study and publish in such an expensive institution.
30To solve this problem, you need to use the formula that presented as the identity: (a2+b2)×(c2+d2)=(ac+bd)2+(ad−bc)2=(ac−bd)2+(ad+bc)2. We take two numbers 4 + 9 = 13 and 1 + 16 = 17. Their product will be 13×17 = 221 = (4 + 9) × (1+16) = (2×1 + 3×4)2 + (2×4 − 3×1)2 = (2×1 − 3×4)2 + (2×4 + 3×1)2 = 142 + 52 = 102 + 112; Now if 2216 = (2213)2 = 107938612; then the required result will be 2217 = (142 + 52)×107938612 = (14×10793861)2 + (5×10793861)2 = 1511140542 + 539693052 = (102 + 112)×107938612=(10×10793861)2 + (11×10793861)2=1079386102 + 1187324712; But you can go also the other way if you submit the initial numbers for example, as follows: 2212 = (142 + 52)×(102 + 112) = (14×10 + 5×11)2 + (14×11 − 5×10)2 = (14×10 − 5×11)2 + (14×11+5×10)2 = 1952 + 1042 = 852 + 2042; 2213 = 2212×221 = (1952 + 1042)×(102 + 112) = (195×10 + 104×11)2 + (195×11 − 104×10)2 = (195×10 − 104×11)2 +(195×11 + 104 × 10)2 = 3 0942 + 11052 = 8062 + 31852; 2214 = (1952 + 1042)×(852 + 2042) = (195×85 + 104×204)2 + (195×204 − 85×104)2 = (195×85 − 104×204)2 + (195×204 + 85×104)2 = 377912 + 309402 = 46412 + 486202; 2217 = 2213×2214 = (30942 + 11052)×(377912 + 309402) = (3094×37791 + 1105×30940)2 + (3094×30940 − 1105×37791)2 = (3094×37791 − 1105×30940)2 + (3094×30940 + 1105×37791)2; 2217 = 1511140542 + 539693052 = 827366542 + 1374874152
31If Fermat's working notes were found, it would turn out that his methods for solving tasks are much simpler than those that are now known, i.e. the current science has not yet reached the level that took place in his lost works. But how could it happen that these recordings disappeared? There may be two possible versions. The first version is being Fermat’s cache, which no one knew about him. If this was so, there is almost no chance it has persisted. The house in Toulouse, where the Fermat lived with his family, was not preserved, otherwise there would have been a museum. Then there remain the places of work, this is the Toulouse Capitol (rebuilt in 1750) and the building in the city of Castres (not preserved) where Fermat led the meeting of judges. Only ghostly chances are that at least some walls have been preserved from those times. Another version is that Fermat’s papers were in his family’s possession, but for some reason were not preserved (see Appendix IV, year 1660, 1663 and 1680).
32For mathematicians and programmers, the notion of function argument is quite common and has long been generally accepted. In particular, f (x, y, z) denotes a function with variable arguments x, y, z. The definition of the essence of a number through the notion of function arguments makes it very simple, understandable and effective since everything what is known about the number, comes from here and all what this definition does not correspond, should be questioned. This is not just the necessary caution, but also an effective way to test the strength of all kinds of structures, which quietly replace the essence of the number with dubious innovations that make science gormlessly and unsuitable for learning.
33An exact definition the notion of data does not exist unless it includes a description from the explanatory dictionary. From here follows the uncertainty of its derivative notions such as data format, data processing, data operations etc. Such vague terminology generates a formulaic thinking, indicating that the mind does not develop, but becomes dull and by reaching in this mishmash of empty words critical point, it simply ceases to think. In this work, a definition the notion of “data” is given in Pt. 5.3.2. But for this it is necessary to give the most general definition the notion of information, which in its difficulty will be else greater than the definition the notion of number since the number itself is an information. The advances in this matter are so significant that after they will follow a real technological breakthrough with such potential of efficiency, which will be incomparably higher than which was due to the advent of computers.
34Computations are not only actions with numbers, but also the application of methods to achieve the final result. Even a machine can cope with actions if the mind equips it with appropriate methods. But if the mind itself becomes like a machine i.e. not aware the methods of calculation, then it is able to create only monsters that will destroy also him selves. Namely to that all is going now because of the complete lack of a solution to the problem of ensuring data security. But the whole problem is that informatics as a science simply does not exist.
35Specialists who comment on the ancients in their opinion the Euclid's "Elements" and the Diophantus' "Arithmetic", as if spellbound, see but cannot acknowledge the obvious. Neither Euclid nor Diophantus can be the creators the content of these books, this is beyond the power of even modern science. Moreover, these books appeared only in the late Middle Ages when the necessary writing was already developed. The authors of these books were just translators of truly ancient sources belonging to another civilization. Nowadays, people with such abilities are called medium.
36If from the very beginning we have not decided on the concept of a number and have an idea of it only through prototypes (the number of fingers, or days of the week etc.), then sooner or later we will find that we don’t know anything about numbers and follow the calculations an immense set of empirical methods and rules. However, if initially we have an exact definition the notion of number, then for any calculations, we can use only this definition and the relatively small list of rules following from it. If we ourselves creating the required numbers, we can do this through the function arguments, which are represented in the generally accepted number system. But when it is necessary to calculate unknown numbers corresponding to a given function and task conditions, then special methods will often be required, which without understanding the essence of numbers will be very difficult.
37The content of Peano’s axioms is as follows: (A1) 1 is a natural number; (A2) For any natural number n there is a natural number denoted by n' and called the number following n; (A3) If m'=n' for any positive integers m, n then m = n; (A4) The number 1 does not follow any natural number i.e. n' is never equal to 1; (A5) If the number 1 has some property P and for any number n with the property P the next number n' also has the property P then any natural number has the property P.
38In the Euclid's "Elements" there is something similar to this axiom: "1. An unit is that by virtue of each of the things that exist is called one. 2. A number is a multitude composed of units” (Book VII, Definitions).
39So, count is the nominate starting numbers in a finished (counted) form so that on their basis it becomes possible using a similar method to name any other numbers. All this of course, is not at all difficult, but why is it not taught at school and simply forced to memorize everything without explanation? The answer is very simple – because science simply does not know what a number is, but in any way cannot acknowledge this.
40The axioms of actions were not separately singled out and are a direct consequence of determining the essence a notion of number. They contribute both to learning and establish a certain responsibility for the validity of any scientific research in the field of numbers. In this sense, the last 6th axiom looks even too categorical. But without this kind of restriction any gibberish can be dragged into the knowledge system and then called it a “breakthrough in science”.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26 
Рейтинг@Mail.ru