Поднесите кружок к глазам так, как показано на этом рисунке. Вы ясно прочтете сначала слово «государственное», а затем, повернув кружок, увидите и другое слово – «издательство».
Буквы сильно вытянуты и езжены, поэтому прочесть их прямо трудно. Но когда ваш взгляд скользит вдоль букв, их длина сокращается, ширина же остается прежняя. От этого буквы получают обычный вид, и написанное читается без труда.
Художник изобразил заход молодого месяца в экваториальных странах. Там месяц может при заходе лежать именно так, как изображено на рисунке. Если вы были на Кавказе, вы заметили, вероятно, что молодой месяц там наклонен не так, как на севере. А под тропиками в некоторое время года он совсем ложится. Значит, художник не сделал ошибки, а нарисовал то, что действительно бывает.
Начертить эту фигуру можно, потому что во всех точках пересечения сходятся по четыре линии, т. е. четное их число. Как начертить – показано на рисунке.
Из тех пяти кусочков, которые здесь нарисованы, надо составить фигуру в форме креста.
Как это сделать?
Начертите эти пять кусочков отдельно на бумаге, вырежьте ножницами и попытайтесь найти решение задачи.
Попробуйте теперь из других пяти кусочков сложить квадрат (см. рисунок).
Этот участок земли составлен из пяти квадратных участков одинаковой величины. Можете ли вы разделить его не на пять, а только на четыре одинаковых участка?
Возьмите чистый лист бумаги. Начертите на нем изображенный здесь участок и отыщите требуемое решение.
Слыхали ли вы о «китайской головоломке»? Это старинная китайская игра, еще более древняя, чем шахматы: она зародилась несколько тысячелетий назад. Сущность игры состоит в том, что квадрат (деревянный или картонный) разрезают на семь частей так, как показано на рисунке, и из этих частей надо составлять разные фигуры. Это вовсе не так легко, как кажется на первый взгляд. Если вы смешаете семь кусочков «китайской головоломки» и предложите кому-нибудь составить из них снова квадрат, не глядя на рисунок, он справится с этой задачей далеко не сразу.
Но вот задача для вас самих: из семи долек квадрата составьте фигуру сначала серпа, а потом из них же фигуру молота. (Очертания их показаны на рисунке.) Вы должны помнить при этом, что части «китайской головоломки» нигде не должны налегать друг на друга и что в состав и серпа и молота должны входить все семь частей. Перевертывать части «головоломки» на левую сторону можно.
Двумя взмахами ножниц разрежьте этот крест на четыре части таким образом, чтобы из них можно было составить сплошной квадрат.
Изображенное здесь яблоко надо разрезать на такие четыре части, из которых можно было бы составить фигуру петушка. Как это сделать?
Столяру принесли две продолговатых доски из редкой породы дерева и заказали сколотить из них совершенно круглую доску для стола», да такую, чтобы никаких обрезков дорогого дерева не оставалось. В дело должно пойти все дерево до последнего кусочка. На рисунке вы видите, что принесли столяру: обе доски с дырами посредине.
Столяр был мастер, каких мало, но и заказ был не из легких. Долго ломал себе столяр голову, прикидывал так и этак – и наконец догадался, как исполнить заказ.
Может быть, и вы догадаетесь?
На озере три острова, которые отмечены на нашем чертеже цифрами 1, 2 и 3. А на берегу расположено три рыбачьих поселка: I, II и III.
Лодка отплывает из поселка I, посещает острова 1 и 2 и пристает к поселку II. Одновременно из поселка III отплывает другая лодка, пристающая к острову 3. Пути обеих лодок не пересекаются.
Можете ли вы начертить эти пути?
На этом чертеже квадрат обозначает пруд, а четыре кружочка близ углов – деревья. Надо расширить пруд до размера, вдвое большего по площади, но так, чтобы деревья не срубать.
Возможно ли это сделать?
Надо разложить шесть копеечных монет в три прямых ряда так, чтобы в каждом ряду было по три копейки.
Вы думаете – это невозможно? Не хватает еще трех монет? А вот поглядите, они здесь расположены на рисунке.
Вы видите здесь три ряда монет, по три в каждом ряду. Значит, задача решена. Правда, ряды перекрещиваются, но ведь не запрещено было их перекрещивать.
Теперь попробуйте сами догадаться, как можно решить ту же задачу еще и другим способом.
Надо расположить девять монет в десять рядов по три монеты в каждом ряду. Можно ли это сделать?