9. Задачу решают с конца. Будем исходить из того, что после всех перекладываний число спичек в кучках сделалось одинаковым. Так как от этих перекладываний общее число спичек не изменилось, осталось прежнее (48), то в каждой кучке к концу всех перекладываний оказалось 16 штук.
Итак, имеем в самом конце:
Непосредственно перед этим в 1-ю кучку было прибавлено столько спичек, сколько в ней имелось; иначе говоря, число спичек в ней было удвоено. Значит, до последнего перекладывания в 1-й кучке было не 16, а только 8 спичек. В кучке же 3-й, из которой 8 спичек было взято, имелось перед тем 16 + 8 = 24 спички. Теперь у нас такое распределение спичек по кучкам:
Далее, мы знаем, что перед этим из 2-й кучки было переложено в 3-ю столько спичек, сколько имелось в 3-й кучке. Значит, 24 – это удвоенное число спичек, бывших в 3-й кучке до этого перекладывания. Отсюда узнаем распределение спичек после первого перекладывания:
Легко сообразить, что раньше первого перекладывания (т. е. до того, как из 1-й кучки переложено было во 2-ю столько спичек, сколько в этой 2-й имелось) распределение спичек было таково:
Таковы первоначальные числа спичек в кучках.
10. Эту головоломку также проще решить с конца. Мы знаем, что после третьего удвоения в кошельке оказалось 1 руб. 20 коп. (Деньги эти получил старик в последний раз.) Сколько же было до этого удвоения? Конечно, 60 коп. Остались эти 60 коп. после уплаты старику вторых 1 руб. 20 коп., а до уплаты было в кошельке
1 руб. 20 коп. + 60 коп. = 1 руб. 80 коп.
Далее: 1 руб. 80 коп. оказались в кошельке после второго удвоения; до того было всего 90 коп., оставшиеся после уплаты старику первых 1 руб. 20 коп. Отсюда узнаем, что до уплаты находились в кошельке 90 коп. + + 1 руб. 20 коп. = 2 руб. 10 коп. Столько денег имелось в кошельке после первого удвоения; раньше же было вдвое меньше – 1 руб. 5 коп. Это и есть те деньги, с которыми крестьянин приступил к своим неудачным финансовым операциям.
Проверим ответ:
Деньги в кошельке
После 1-го удвоения 1 руб. 5 коп. х 2 = 2 руб. 10 коп.
« 1-й уплаты…..2 руб. 10 коп. – 1 руб. 20 коп. = 90 коп.
« 2-го удвоения……..90 коп. х 2 = 1 руб. 80 коп.
« 2-й уплаты…..1 руб. 80 коп. – 1 руб. 20 коп. = 60 коп.
« 3-го удвоения……..60 коп. х 2 = 1 руб. 20 коп.
« 3-й уплаты…..1 руб. 20 коп. – 1 руб. 20 коп. = 0.
11. Наш календарь ведет свое начало от календаря древних римлян. Римляне же (до Юлия Цезаря) считали началом года не 1 января, а 1 марта. Декабрь тогда был, следовательно, десятый месяц. С перенесением начала года на 1 января названия месяцев изменены не были. Отсюда и произошло то несоответствие между названием и порядковым номером, которое существует теперь для ряда месяцев:
12. Проследим за тем, что проделано было с задуманным числом. Прежде всего к нему приписали взятое трехзначное число еще раз. Это то же самое, что приписать три нуля и прибавить затем первоначальное число; например:
872 872 = 872 000 + 872.
Теперь ясно, что, собственно, проделано было с числом: его увеличили в 1000 раз и, кроме того, прибавили его самого; короче сказать – умножили число на 1001.
Что же сделано было потом с этим произведением? Его разделили последовательно на 7, на 11 и на 13. В конечном счете, значит, разделили его на 7 х 11 х 13, т. е. на 1001.
Итак, задуманное число сначала умножили на 1001, потом разделили на 1001. Надо ли удивляться, что в результате получилось то же самое число?
______________________________
Прежде чем закончить главу о головоломках в доме отдыха, расскажу еще о трех арифметических фокусах, которыми вы можете занять досуг ваших товарищей. Два состоят в отгадывании чисел, третий – в отгадывании владельцев вещей.
Это старые, быть может, даже и известные вам фокусы, но едва ли все знают, на чем они основаны. А без знания теоретической основы фокуса нельзя сознательно и уверенно его выполнять. Обоснование первых двух фокусов потребует от нас весьма скромной и ничуть не утомительной экскурсии в область начальной алгебры.
Пусть товарищ ваш задумает какое-нибудь многозначное число, например 847. Предложите ему найти сумму цифр этого числа (8+ 4 + 7 = 19) и отнять ее от задуманного числа. У загадчика окажется
847 – 19 = 828.
В том числе, которое получится, пусть он зачеркнет одну цифру – безразлично какую – и сообщит вам все остальные. Вы немедленно называете ему зачеркнутую цифру, хотя не знаете задуманного числа и не видели, что с ним проделывалось.
Как можете вы это выполнить и в чем разгадка фокуса? Выполняется это очень просто: подыскивается такая цифра, которая вместе с суммою вам сообщенных цифр составила бы ближайшее число, делящееся на 9 без остатка. Если, например, в числе 828 была зачеркнута первая цифра (8) и вам сообщены цифры 2 и 8, то, сложив 2 + 8, вы соображаете, что до ближайшего числа, делящегося на 9, т. е. до 18, не хватает 8. Это и есть зачеркнутая цифра.
Почему так получается? Потому что если от какого-либо числа отнять сумму его цифр, то должно остаться число, делящееся на 9, – иначе говоря, такое, сумма цифр которого делится на 9. В самом деле, пусть в задуманном числе цифра сотен – а, цифра десятков – Ь и цифра единиц – с. Значит, всего в этом числе содержится единиц
100а + 10b + с.
Отнимаем от этого числа сумму его цифр а + b + с.
Получим
100a + 10b + c – (a + b + c) = 99a + 9b = 9(11a + b).
Но 9 (11 а + Ь) конечно, делится на 9; значит, при вычитании из числа суммы его цифр всегда должно получиться число, делящееся на 9 без остатка.
При выполнении фокуса может случиться, что сумма сообщенных вам цифр сама делится на 9 (например, 4 и 5). Это показывает, что зачеркнутая цифра есть либо
О, либо 9. Так вы и должны ответить: «О или 9».
Вот видоизменение того же фокуса: вместо того чтобы из задуманного числа вычитать сумму его цифр, можно вычесть число, полученное из данного какой-либо перестановкой его цифр. Например, из числа 8247 можно вычесть 2748 (если получается число большее задуманного, то вычитают меньшее из большего). Дальше поступают, как раньше сказано:
8247 – 2748 = 5499;
если зачеркнута цифра 4, то, зная цифры 5,9,9, вы соображаете, что ближайшее к 5 + 9 + 9, т. е. 23, число, делящееся на 9, есть 27. Значит, зачеркнутая цифра 27–23 = 4.
Вы предлагаете товарищу задумать трехзначное число, не оканчивающееся нулем, такое, в котором крайние цифры разнятся больше чем на 1, и просите затем переставить цифры в обратном порядке. Сделав это, он должен вычесть меньшее число из большего и полученную разность сложить с нею же, но написанною в обратной последовательности цифр. Ничего не спрашивая у загадчика, вы сообщаете ему число, которое у него получилось в конечном счете.
Если, например, было задумано 467, то загадчик должен выполнять следующие действия:
Этот окончательный результат – 1089 – вы и объявляете загадчику. Как вы можете его узнать?
Рассмотрим задачу в общем виде. Возьмем число с цифрами а, b, с. Оно изобразится так:
100а + 10 b + с.
Число с обратным расположением имеет вид:
100с + 10 b + а.
Разность между первым и вторым равна:
99а – 99с.
Делаем следующие преобразования:
99 а – 99 с = 99 (а – с) = 100 {а – с) – а + с = 100(а – с) — 100 + 100 – 10 + 10 – а с = 100 (а – с — 1) + 90 + (10 – а + с).
Значит, разность состоит из следующих трех цифр:
цифра сотен: а – с — 1,
« десятков: 9,
« единиц: 10 + с – а.
Число с обратным расположением цифр изображается так:
100(10 + с – а) + 90 + (а – с — 1).
Сложив оба выражения
100 (а – с — 1) + 90 + 10 + с – а 100(10 + с – а) + 90 + а – с — 1,
получаем
100 х 9 + 180 + 9 = 1089.
Каковы бы ни были цифры а, Ь, с, в итоге выкладок всегда получается одно и то же число: 1089. Нетрудно поэтому отгадать результат этих вычислений: вы знали его заранее. Понятно, что показывать этот фокус одному лицу дважды нельзя – секрет будет раскрыт.
Для выполнения этого остроумного фокуса необходимо подготовить три какие-нибудь мелкие вещицы, удобно помещающиеся в кармане, например карандаш, ключ и перочинный ножик. Кроме того, поставьте на стол тарелку с 24 орехами; за неимением орехов годятся шашки, кости домино, спички и т. п.
Троим товарищам вы предлагаете во время вашего отсутствия в комнате спрятать в карман карандаш, ключ или ножик, кто какую вещь хочет. Вы беретесь отгадать, в чьем кармане какая вещь.
Процедура отгадывания проводится так. Возвратившись в комнату после того, как вещи спрятаны в карманах товарищей, вы начинаете с того, что вручаете им на сохранение орехи из тарелки.
Первому даете один орех, второму – два, третьему – три. Затем снова удаляетесь из комнаты, оставив товарищам следующую инструкцию. Каждый должен взять себе из тарелки еще орехов, а именно: обладатель карандаша берет столько орехов, сколько ему было вручено; обладатель ключа берет вдвое больше того числа орехов, какое ему было вручено; обладатель ножа берет вчетверо больше того числа орехов, какое ему было вручено.
Прочие орехи остаются на тарелке.
Когда все это проделано и вам дан сигнал возвратиться, вы, входя в комнату, бросаете взгляд на тарелку и объявляете, у кого в кармане какая вещь.
Фокус тем более озадачивает, что выполняется без участия тайного сообщника, подающего вам незаметные сигналы. В нем нет никакого обмана: он целиком основан на арифметическом расчете. Вы разыскиваете обладателя каждой вещи единственно лишь по числу оставшихся орехов. Остается их на тарелке немного – от 1 до 7, и счесть их можно одним взглядом.
Как же, однако, узнать по остатку орехов, кто взял какую вещь?
Очень просто: каждому случаю распределения вещей между товарищами отвечает иное число остающихся орехов. Мы сейчас в этом убедимся.
Пусть имена ваших товарищей Владимир, Георгий, Константин; обозначим их начальными буквами: В, Г, К Вещи также обозначим буквами: карандаш – а, ключ – Ь, нож – с. Как могут три вещи распределиться между тремя обладателями? На 6 ладов:
Других случаев, очевидно, быть не может; наша табличка систематически исчерпывает все комбинации.
Посмотрим теперь, какие остатки отвечают каждому из этих 6 случаев:
Вы видите, что остаток орехов всякий раз получается иной. Поэтому, зная остаток, вы легко устанавливаете, каково распределение вещей между вашими товарищами. Вы снова – в третий раз – удаляетесь из комнаты и заглядываете там в свою записную книжку, где записана сейчас воспроизведенная табличка (собственно, нужны вам только первая и последняя графы); запомнить ее наизусть трудно, да и нет надобности. Табличка скажет вам, в чьем кармане какая вещь. Если, например, на тарелке осталось 5 орехов, то это означает (случай b, с, а), что
ключ – у Владимира;
нож – у Георгия;
карандаш – у Константина.
Чтобы фокус удался, вы должны твердо помнить, сколько орехов вы дали каждому товарищу (раздавайте орехи поэтому всегда по алфавиту, как и было сделано в нашем случае).
Почему 28 костей домино можно выложить с соблюдением правил игры в одну непрерывную цепь?
Когда 28 костей домино выложены в цепь, на одном ее конце оказалось 5 очков.
Сколько очков на другом конце?
Ваш товарищ берет одну из костей домино и предлагает вам из остальных 27 составить непрерывную цепь, утверждая, что это всегда возможно, какая бы кость ни была взята. Сам же он удаляется в соседнюю комнату, чтобы не видеть вашей цепи.
Вы приступаете к работе и убеждаетесь, что товарищ ваш прав: 27 костей выложились в одну цепь. Еще удивительнее то, что товарищ, оставаясь в соседней комнате и не видя вашей цепи, объявляет оттуда, какие числа очков на ее концах.
Как может он это знать? И почему он уверен, что из всяких 27 костей домино составится непрерывная цепь?
Рис. 9 изображает квадратную рамку, выложенную из костей домино с соблюдением правил игры. Стороны рамки равны по длине, но не одинаковы по сумме очков: верхний и левый ряды заключают по 44 очка, остальные же два ряда – 59 и 32.
Рис. 9. Рамка из домино
Можете ли вы выложить такую квадратную рамку, все стороны которой заключали бы одинаковую сумму очков – именно 44?
Четыре кости домино можно выбрать так, чтобы из них составился квадратик с равной суммой очков на каждой стороне. Образчик вы видите на рис. 10: сложив очки на каждой стороне квадратика, во всех случаях получите 11.
Рис. 10
Рис. 11. Магический квадрат из домино
Можете ли вы из полного набора домино составить одновременно семь таких квадратов? Не требуется, чтобы сумма очков на одной стороне получалась у всех квадратов одна и та же; надо лишь, чтобы каждый квадрат имел на своих четырех сторонах одинаковую сумму очков.