bannerbannerbanner
Живая математика. Математические рассказы и головоломки

Яков Перельман
Живая математика. Математические рассказы и головоломки

Полная версия

2. В коммунальной кухне

– Головоломка моя зародилась в обстановке коммунальной квартиры. Задача, так сказать, бытовая. Жилица – назову ее для удобства Тройкиной – положила в общую плиту 3 полена своих дров, жилица Пятеркина – 5 поленьев. Жилец Бестопливный, у которого, как вы догадываетесь, не было своих дров, получил от обеих гражданок разрешение сварить обед на общем огне. В возмещение расходов он уплатил соседкам 80 копеек. Как должны они поделить между собой эту плату?

– Пополам, – поспешил заявить кто-то. – Бестопливный пользовался их огнем в равной мере.

– Ну нет, – возразил другой, – надо принять в соображение, как участвовали в этом огне дровяные вложения гражданок. Кто дал 3 полена, должен получить 30 копеек; кто дал 5 поленьев, получает 50 копеек. Вот это будет справедливый дележ.


Рис. 2. На кухне


– Товарищи, – взял слово тот, кто затеял игру и считался теперь председателем собрания. – Окончательные решения головоломок давайте пока не объявлять. Пусть каждый еще подумает над ними. Правильные ответы судья огласит нам за ужином. Теперь следующий. Очередь за вами, товарищ пионер!

3. Работа школьных кружков

– В нашей школе, – начал пионер, – имеется 5 кружков: политкружок, военный, фотографический, шахматный и хоровой. Политкружок занимается через день, военный – через 2 дня на 3-й; фотографический – каждый 4-й день, шахматный – каждый 5-й день и хоровой – каждый 6-й день. Первого января собрались в школе все 5 кружков, а затем занятия велись в назначенные по плану дни, без отступлений от расписания. Вопрос состоит в том, сколько в первом квартале было еще вечеров, когда собирались в школе все 5 кружков.

– А год был простой или високосный? – осведомились у пионера.


Рис. 3. «В нашей школе пять кружков», – начал пионер…


– Простой.

– Значит, первый квартал, – январь, февраль, март, – надо считать за 90 дней?

– Очевидно.

– Позвольте к вопросу вашей головоломки присоединить еще один, – сказал профессор. – А именно сколько в том же квартале года было таких вечеров, когда кружковых занятий в школе вовсе не происходило?

– Ага, понимаю! – раздался возглас. – Задача с подвохом. Ни одного дня не будет больше с 5 кружками и ни одного дня без всяких кружков. Это уже ясно!

– Почему? – спросил председатель.

– Объяснить не могу, но чувствую, что отгадчика хотят поймать врасплох.

– Ну, это не довод. Вечером выяснится, правильно ли ваше предчувствие. За вами очередь, товарищ!

4. Кто больше?

– Двое считали в течение часа всех, кто проходил мимо них по тротуару. Один стоял у ворот дома, другой прохаживался взад и вперед по тротуару. Кто насчитал больше прохожих?

– Идя, больше насчитаешь, ясное дело, – донеслось с другого конца стола.

– Ответ узнаем за ужином, – объявил председатель. – Следующий!

5. Дед и внук

– То, о чем я скажу, происходило в 1932 году. Мне было тогда ровно столько лет, сколько выражают последние две цифры года моего рождения. Когда я об этом соотношении рассказал деду, он удивил меня заявлением, что с его возрастом выходит то же самое. Мне это показалось невозможным…

– Разумеется, невозможно, – вставил чей-то голос.

– Представьте, вполне возможно! Дед доказал мне это. Сколько же было лет каждому из нас?

6. Железнодорожные билеты

– Я – железнодорожная кассирша, продаю билеты, – начала следующая участница игры. – Многим это кажется очень простым делом. Не подозревают, с каким большим числом билетов приходится иметь дело кассиру даже маленькой станции. Ведь необходимо, чтобы пассажиры могли получить билеты от данной станции до любой другой на той же дороге, притом в обоих направлениях. Я служу на дороге с 25 станциями. Сколько же различных образцов билетов заготовлено железной дорогой для всех ее касс?

– Ваша очередь, товарищ летчик, – провозгласил председатель.

7. Полет дирижабля

– Из Ленинграда вылетел прямо на север дирижабль. Пролетев в северном направлении 500 километров, он повернул на восток. Пролетев в эту сторону 500 километров, дирижабль сделал новый поворот – на юг и прошел в южном направлении 500 километров.


Рис. 4. «500 шагов вперед, 500 вправо, 500 назад…»


Затем он повернул на запад и, пролетев 500 километров, опустился на землю. Спрашивается: где расположено место спуска дирижабля относительно Ленинграда – к западу, к востоку, к северу или к югу?

– На простака рассчитываете, – сказал кто-то, – 500 шагов вперед, 500 вправо, 500 назад да 500 влево, куда придем? Откуда вышли, туда и придем!

– Итак, где, по-вашему, спустился дирижабль?

– На том же ленинградском аэродроме, откуда поднялся. Не так разве?

– Именно не так.

– В таком случае я ничего не понимаю!

– В самом деле, здесь что-то неладно, – вступил в разговор сосед. – Разве дирижабль спустился не в Ленинграде? Нельзя ли повторить задачу?

Летчик охотно исполнил просьбу. Его внимательно выслушали и с недоумением переглянулись.

– Ладно, – объявил председатель. – До ужина успеем подумать об этой задаче, а сейчас будем продолжать.

8. Тень

– Позвольте мне, – сказал очередной загадчик, – взять сюжетом головоломки тот же дирижабль. Что длиннее: дирижабль или его полная тень?

– В этом и вся головоломка?

– Вся.

– Тень, конечно, длиннее дирижабля: ведь лучи солнца расходятся веером, – последовало сразу решение.

– Я бы сказал, – возразил кто-то, – что, напротив, лучи солнца параллельны; тень и дирижабль одной длины.


Рис. 5. Расходящиеся лучи от спрятавшегося за облаком солнца


– Что вы? Разве не случалось вам видеть расходящиеся лучи от спрятавшегося за облаком солнца? Тогда можно воочию убедиться, как сильно расходятся солнечные лучи. Тень дирижабля должна быть значительно больше самого дирижабля, как тень облака больше самого облака.

– Почему же обычно принимают, что лучи солнца параллельны? Моряки, астрономы – все так считают… Председатель не дал спору разгореться и предоставил слово следующему загадчику.

9. Задача со спинками

Очередной оратор высыпал на стол все спички из коробка и стал распределять их в три кучки.

– Костер собираетесь раскладывать? – шутили слушатели.

– Головоломка, – объяснил загадчик, – будет со спичками. Вот их три неравных кучки. Во всех вместе 48 штук. Сколько в каждой, я вам не сообщаю. Зато отметьте следующее: если из первой кучки я переложу во вторую столько спичек, сколько в этой второй кучке имелось; затем из второй в третью переложу столько, сколько в этой третьей перед тем будет находиться; и, наконец, из третьей переложу в первую столько спичек, сколько в этой первой кучке будет тогда иметься, – если, говорю, все это проделать, то число спичек во всех кучках станет одинаково. Сколько же было в каждой кучке первоначально?

10. Коварный пень

– Головоломка эта, – начал сосед последнего загадчика, – напоминает задачу, которую давно как-то задал мне деревенский математик. Это был целый рассказ, довольно забавный. Повстречал крестьянин в лесу незнакомого старика. Разговорились. Старик внимательно оглядел крестьянина и сказал:

– Известен мне в леску этом пенечек один удивительный. Очень в нужде помогает.

– Как помогает? Вылечивает?

– Лечить не лечит, а деньги удваивает. Положишь под него кошель с деньгами, досчитаешь до ста – и готово: деньги, какие были в кошельке, удвоились. Такое свойство имеет. Замечательный пень!

– Вот бы мне испробовать, – мечтательно сказал крестьянин.

– Это можно. Отчего же? Заплатить только надо.

– Кому платить? И много ли?

– Тому платить, кто дорогу укажет. Мне, значит. А много ли, о том особый разговор.

Стали торговаться. Узнав, что у крестьянина в кошельке денег мало, старик согласился получить после каждого удвоения по 1 руб. 20 коп. На том и порешили. Старик повел крестьянина в глубь леса, долго бродил с ним и наконец разыскал в кустах старый, покрытый мохом еловый пень. Взяв из рук крестьянина кошелек, он засунул его между корнями пня. Досчитали до ста. Старик снова стал шарить и возиться у основания пня, наконец извлек оттуда кошелек и подал крестьянину.

Заглянул крестьянин в кошелек, и что же? Деньги в самом деле удвоились! Отсчитал из них старику обещанные 1 руб. 20 коп. и попросил засунуть кошелек вторично под чудодейственный пень.

Снова досчитали до ста, снова старик стал возиться в кустах у пня, и снова совершилось диво: деньги в кошельке удвоились. Старик вторично получил из кошелька обусловленные 1 руб. 20 коп.

В третий раз спрятали кошель под пень. Деньги удвоились и на этот раз. Но когда крестьянин уплатил старику обещанное вознаграждение, в кошельке не осталось больше ни одной копейки.

Бедняга потерял на этой комбинации все свои деньги. Удваивать больше было уже нечего, и крестьянин уныло побрел из лесу.

Секрет волшебного удвоения денег вам, конечно, ясен – старик недаром, отыскивая кошелек, мешкал в зарослях у пня. Но можете ли вы ответить на другой вопрос: сколько было у крестьянина денег до злополучных опытов с коварным пнем?

11. Задача о декабре

– Я, товарищи, языковед, от всякой математики далек, – начал пожилой человек, которому пришел черед задавать головоломку. – Не ждите от меня поэтому математической задачи. Могу только предложить вопрос из знакомой мне области. Разрешите задать календарную головоломку?

 

– Просим!

– Двенадцатый месяц называется у нас «декабрь». А вы знаете, что, собственно, значит «декабрь»? Слово это происходит от греческого слова «дека» – десять, отсюда также слова «декалитр» – десять литров, «декада» – десять дней и т. д. Выходит, что месяц декабрь носит название «десятый». Чем объяснить такое несоответствие?

– Ну, теперь осталась только одна головоломка, – произнес председатель.

12. Арифметический фокус

– Мне приходится выступать последним, двенадцатым. Для разнообразия покажу вам арифметический фокус и попрошу раскрыть его секрет. Пусть кто-нибудь, хотя бы вы, товарищ председатель, напишет, тайно от меня, любое трехзначное число.

– Могут быть и нули в этом числе?

– Не ставлю никаких ограничений. Любое трехзначное число, какое пожелаете.

– Написал. Что теперь?

– Припишите к нему это же число еще раз. У вас получится, конечно, шестизначное число.

– Есть. Шестизначное число.

– Передайте бумажку соседу, что сидит подальше от меня. А он пусть разделит это шестизначное число на семь.

– Легко сказать: разделить на семь! Может, и не разделится.

– Не беспокойтесь, поделится без остатка.

– Числа не знаете, а уверены, что поделится.

– Сначала разделите, потом будем говорить.

– На ваше счастье – разделилось.

– Результат вручите своему соседу, не сообщая мне. Он разделит его на 11.

– Думаете, опять повезет – разделится?

– Делите, остатка не получится.

– В самом деле, без остатка! Теперь что?

– Передайте результат дальше. Разделим его… ну, скажем, на 13.

– Нехорошо выбрали. Без остатка на 13 мало чисел делится… ан нет, разделилось нацело. Везет же вам!

– Дайте мне бумажку с результатом; только сложите ее, чтобы я не видел числа.

Не развертывая листка бумаги, «фокусник» вручил его председателю.

– Извольте получить задуманное вами число. Правильно?

– Совершенно верно! – с удивлением ответил тот, взглянув на бумажку. – Именно это я и задумал… А теперь, так как список ораторов исчерпан, позвольте закрыть наше собрание, благо и дождь успел пройти. Разгадки всех головоломок будут оглашены сегодня же, после ужина. Записки с решениями можете подавать мне.

РАЗВЯЗКА ЗАВТРАКА

РЕШЕНИЯ ГОЛОВОЛОМОК 1-12

1. Головоломка с белкой на поляне рассмотрена была полностью раньше. Переходим к следующей.


2. Нельзя считать, как многие делают, что 80 коп. уплачено за 8 поленьев, по гривеннику за полено. Деньги эти уплачены только за третью часть от 8 поленьев, потому что огнем пользовались трое в одинаковой мере. Отсюда следует, что все 8 поленьев оценены были в 80 х 3, т. е. в 2 руб. 40 коп., и цена одного полена – 30 коп.

Теперь легко сообразить, сколько причитается каждому. Пятеркиной за ее 5 поленьев следует 150 коп.; но она сама воспользовалась плитой на 80 коп.; значит, ей остается дополучить еще 150 – 80, т. е. 70 коп. Тройкина за 3 своих полена должна получить 90 коп.; а если вычесть 80 коп., причитающиеся с нее за пользование плитой, то следовать ей будет всего только 90–80, т. е. 10 коп.

Итак, при правильном дележе Пятеркина должна получить 70 коп., Тройкина – 10 коп.


3. На первый вопрос – через сколько дней в школе соберутся одновременно все 5 кружков – мы легко ответим, если сумеем разыскать наименьшее из всех чисел, которое делится без остатка на 2, на 3, на 4, на 5 и на 6. Нетрудно сообразить, что число это 60. Значит, на 61-й день соберется снова 5 кружков: политический – через 30 двухдневных промежутков, военный – через 20 трехдневных, фотокружок – через 15 четырехдневных, шахматный – через 12 пятидневок и хоровой – через 10 шестидневок. Раньше чем через 60 дней такого вечера не будет. Следующий подобный же вечер будет еще через 60 дней, т. е. уже во втором квартале.

Итак, в течение первого квартала окажется только один вечер, когда в клубе снова соберутся для занятий все 5 кружков.

Труднее найти ответ на второй вопрос задачи: сколько будет вечеров, свободных от кружковых занятий? Чтобы разыскать такие дни, надо выписать по порядку все числа от 1 до 90 и зачеркнуть в этом ряду дни работы политкружка, т. е. числа 1, 3, 5, 7, 9 и т. д. Потом зачеркнуть дни работы военного кружка: 4-й, 10-й и т. д. После того как зачеркнем затем дни занятий фотокружка, шахматного и хорового, у нас останутся незачеркнутыми те дни первого квартала, когда ни один кружок не работал.

Кто проделает эту работу, тот убедится, что вечеров, свободных от занятий, в течение первого квартала будет довольно много: 24. В январе их 8, а именно 2, 8,12,14,18, 20, 24 и 30-го. В феврале насчитывается 7 таких дней, в марте – 9.


4. Оба насчитали одинаковое число прохожих. Хотя тот, кто стоял у ворот, считал проходивших в обе стороны, зато тот, кто ходил, видел вдвое больше встречных людей.


5. С первого взгляда может действительно показаться, что задача неправильно составлена: выходит как будто, что внук и дед одного возраста. Однако требование задачи, как сейчас увидим, легко удовлетворяется.

Внук, очевидно, родился в XX столетии. Первые две цифры года его рождения, следовательно, 19: таково число сотен. Число, выражаемое остальными цифрами, будучи сложено с самим собою, должно составить 32. Значит, это число 16: год рождения внука 1916, и ему в 1932 г. было 16 лет.

Дед его родился, конечно, в XIX столетии: первые две цифры года его рождения 18. Удвоенное число, выражаемое остальными цифрами, должно составить 132. Значит, само это число равно половине от 132, т. е. 66. Дед родился в 1866 г., и ему теперь 66 лет.

Таким образом, и внуку, и деду в 1932 г. столько лет, сколько выражают последние два числа годов их рождения.


6. На каждой из 25 станций пассажиры могут требовать билет до любой станции, т. е. на 24 пункта. Значит, разных билетов надо напечатать 25 х 24 = 600 образцов.


7. Задача эта никакого противоречия не содержит. Не следует думать, что дирижабль летел по контуру квадрата: надо принять в расчет шарообразную форму Земли. Дело в том, что меридианы к северу сближаются (рис. 6); поэтому, пройдя 500 км по параллельному кругу, расположенному на 500 км севернее широты Ленинграда, дирижабль отошел к востоку на большее число градусов, чем пролетел потом в обратном направлении, очутившись снова на широте Ленинграда. В результате дирижабль, закончив полет, оказался восточнее Ленинграда.

На сколько именно? Это можно рассчитать. На рис. 6 вы видите маршрут дирижабля: ABCDE. Точка N– северный полюс; в этой точке сходятся меридианы АВ и DC. Дирижабль пролетел сначала 500 км на север, т. е. по меридиану AN. Так как длина градуса меридиана 111 км, то дуга меридиана в 500 км содержит 500:111 = 4,5°. Ленинград лежит на 60-й параллели; значит, точка В находится на 60° + 4,5° = 64,5°. Затем дирижабль летел к востоку, т. е. по параллели ВС, и прошел по ней 500 км.


Рис. 6. Как летел дирижабль задачи 7


Длину одного градуса на этой параллели можно вычислить (или узнать из таблиц); она равна 48 км. Отсюда легко определить, сколько градусов пролетел дирижабль на восток: 500: 48 = 10,4°. Далее воздушный корабль летел в южном направлении, т. е. по меридиану CD, и, пройдя 500 км, должен был очутиться снова на параллели Ленинграда. Теперь путь лежит на запад, т. е. по DA; 500 км этого пути явно короче расстояния AD. В расстоянии AD заключается столько же градусов, сколько и в ВС, т. е. 10,4°. Но длина 1° на широте 60° равна 55,5 км. Следовательно, между А и D расстояние равно 55,5 х 10,4 = 577,2 км. Мы видим, что дирижабль не мог спуститься в Ленинграде; он не долетел до него 77 км, т. е. спустился на Ладожском озере.

8. Беседовавшие об этой задаче допустили ряд ошибок. Неверно, что лучи солнца, падающие на земной шар, заметно расходятся. Земля так мала по сравнению с расстоянием ее от солнца, что солнечные лучи, падающие на какую-либо часть ее поверхности, расходятся на неуловимо малый угол: практически лучи эти можно считать параллельными. То, что мы видим иногда при так называемом «иззаоблачном сиянии» (рис. 5 – лучи солнца, расходящиеся веером), – не более как следствие перспективы.

В перспективе параллельные линии представляются сходящимися; вспомните вид уходящих вдаль рельсов (рис. 7) или вид длинной аллеи.

Однако из того, что лучи солнца падают на землю параллельным пучком, вовсе не следует, что полная тень дирижабля равна по длине самому дирижаблю. Взглянув на рис. 8, вы поймете, что полная тень дирижабля в пространстве сужается по направлению к земле и что, следовательно, тень, отбрасываемая им на земную поверхность, должна быть короче самого дирижабля: CD меньше, чем АВ.

Если знать высоту дирижабля, то можно вычислить и то, как велика эта разница. Пусть дирижабль летит на высоте 1000 м над земной поверхностью. Угол, составляемый прямыми АС м. ВD между собою, равен тому углу, под которым усматривается солнце с земли; угол этот известен: около 1/2°. С другой стороны, известно, что всякий предмет, видимый под углом в 1/2°> удален от глаза на 115 своих поперечников. Значит, избыток длины дирижабля над длиною тени (этот избыток усматривается с земной поверхности под углом в 1/2°) должен составлять 115-ю долю от АС.


Рис. 7. Рельсы, уходящие вдаль


Рис. 8. Как падает тень от дирижабля


Величина АС больше отвесного расстояния от А до земной поверхности. Если угол между направлением солнечных лучей и земной поверхностью равен 45°, то АС (при высоте дирижабля 1000 м) составляет около 1400 м, и, следовательно, тень короче дирижабля на 1400: 115 = 12 м.

Все сказанное относится к полной тени дирижабля – черной и резкой – и не имеет отношения к так называемой полутени, слабой и размытой.

Расчет наш показывает, между прочим, что будь на месте дирижабля небольшой воздушный шар диаметром меньше 12 м, он не отбрасывал бы вовсе полной тени; видна была бы только его смутная полутень.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 
Рейтинг@Mail.ru