Сколько прямоугольников можете вы насчитать в этой фигуре (рис. 1)?
Не спешите с ответом. Обратите внимание на то, что спрашивается не о числе квадратов, а о числе прямоугольников – больших и малых, – какие только можно насчитать в этой фигуре.
Рис. 1. Квадрат, разделенный на квадраты
Вы знаете, конечно, разницу между термометрами Реомюра и Цельсия (рис. 2)? Всегда ли градусы на термометре Реомюра больше, чем градусы на термометре Цельсия?
Рис. 2. Термометры Реомюра и Цельсия
Шесть плотников и столяр нанялись на работу. Плотники заработали по 20 руб., столяр же – на 3 руб. больше, чем заработал в среднем каждый из семерых.
Сколько заработал столяр?
Напишите по порядку девять цифр:
1 2 3 4 5 6 7 8 9.
Вы можете, не меняя расположение цифр, вставить между ними знаки плюс и минус таким образом, чтобы в сумме получилось ровно 100. Нетрудно, например, вставив + и – шесть раз, получить 100 таким путем:
12 + 3–4 + 5 + 67 + 8 + 9 = 100.
Если хотите вставить + и – только 4 раза, то тоже получите 100:
123 + 4 – 5 + 67 – 89 = 100.
Попробуйте, однако, получить 100, пользуясь знаками + и – всего только три раза! Это гораздо труднее. И все же вполне возможно, надо только терпеливо искать решение.
В моем книжном шкафу стоят на полке сочинения Пушкина в 8 томах, том к тому. Приехав с дачи, я с досадой убедился, что летом книжный червь усердно сверлил моего Пушкина и успел прогрызть ход от первой страницы первого тома до последней страницы третьего (рис. 3).
Сколько всего страниц прогрыз червь, если в первом томе 700 страниц, во втором – 640, а в третьем – 670?
Рис. 3. Собрание сочинений A.C. Пушкина в восьми томах и книжный червь
Вы, без сомнения, не раз уже обращали внимание на любопытную особенность равенств:
2 + 2 = 4,
2 × 2 = 4.
Это единственный пример, когда сумма и произведение двух целых чисел (и притом равных) одинаковы.
Вам, однако, быть может, неизвестно, что существуют дробные числа (правда, не равные), обладающие тем же свойством:
3 + 11/2 = 41/2,
3 × 11/2 = 41/2.
Попытайтесь подыскать другие примеры. Чтобы вы не думали, что поиски напрасны, скажу: таких чисел весьма и весьма много.
Хороший стрелок стоит у одного борта парохода, а у противоположного помещена мишень.
Рис. 4. Тир на палубе парохода
Пароход движется в направлении, показанном на рис. 4 длинной стрелкой.
Стрелок прицелился совершенно точно. Попадет ли он в цель?
На обыкновенных весах лежат: на одной чашке – булыжник, весящий ровно 2 кг, на другой – железная гиря в 2 кг. Я осторожно опустил весы под воду.
Остались ли чашки в равновесии?
Вы видите здесь деревянный куб, составленный из двух кусков дерева (рис. 5). Верхняя половина куба имеет выступы, входящие в выемки нижней части. Обратите внимание на форму и расположение выступов и объясните: как ухитрился столяр соединить оба куска?
Рис. 5. Хитроумное соединение в собранном виде
Вы сидите в вагоне железной дороги и хотели бы узнать, с какой скоростью он мчится. Можете ли вы определить скорость по стуку колес?