bannerbannerbanner
Физика на каждом шагу

Яков Перельман
Физика на каждом шагу

Полная версия

Ловкость в производстве опытов не дается сама собою; она приобретается только трудом. Когда вы учитесь танцевать, ваши первые движения неуклюжи, и только путем упражнения научаетесь танцевать. Таков же и единственный путь научиться производить опыты. Поэтому не следует смущаться своею неловкостью на первых порах; повторяя и повторяя то же дело, вы скоро справитесь с ним и приобретете недостававшие вам навык и ловкость.

Идя таким путем, вы вступите в прямое сношение с природой, вы будете размышлять не о том, что прочитали в книгах, а о том, что говорит вам сама природа. Мысли, порожденные этим источником, отличаются удивительною живостью, какой не может им дать одно книжное знание.

Джон Тиндаль «Уроки по электричеству»

Предисловие автора

Эта книга содержит сотню пестрых рассказов из области физики, расположенных в определенной системе, несмотря на непринужденную внешнюю форму. Предназначена она для тех, кто владеет лишь самыми начальными сведениями из физики или вовсе еще не приступал к ее изучению. Она заметно отличается, следовательно, от другой книги того же автора – «Занимательная физика», сходной по манере изложения, но имеющей в виду более сведущего читателя. «Физика на каждом шагу» не стремится заменить собою школьный учебник. Ее цель – побудить читателя к сознательному наблюдению простейших физических явлений, научить замечать их в окружающей обстановке, в обиходе, в природе, в технике, незаметно накопляя тот запас фактов, систематическим изучением которых занимается физическая наука. Сведения из теории сообщаются лишь самые элементарные и в весьма скромном объеме; главное же внимание привлекается к фактам и опытам. Подбор опытов таков, что их можно выполнять и черпать из них поучения без всяких приборов. Отдельные страницы книги посвящены эпизодам из истории физики.

Для второго издания текст книги пересмотрен и дополнен многочисленными вставками; все иллюстрации, помещенные в этом издании, – новые[1].

Глава первая Немного механики

Скала Эдисона

Незадолго до смерти знаменитый американский изобретатель Эдисон пожелал отличить самого сметливого юношу своей страны, назначив ему щедрую денежную поддержку для дальнейшего образования. Со всех концов республики были направлены к нему молодые люди, по одному от каждого штата, отобранные школьным начальством. Эти полсотни юношей подверглись в доме Эдисона письменному экзамену: они должны были ответить на 60 вопросов особой викторины, составленной изобретателем и его сотрудниками. Судьями были сам Эдисон, «автомобильный король» Форд, прославленный летчик Линдберг и несколько видных американских педагогов. Один из вопросов Эдисоновой викторины, который я хочу предложить и вам, состоял в следующем:

Вообразите, что вы очутились на тропическом острове Тихого океана без всяких орудий. Как сдвинули бы вы там с места груз в 3 т, например гранитную глыбу в 100 футов длины и 15 футов высоты?

Рис. 1. Томас Алва Эдисон (1847–1931), американский изобретатель и предприниматель


Задача кажется неразрешимой. Что поделаешь голыми руками с трехтонной каменной глыбой таких внушительных размеров?

Вникнем однако поглубже в задачу и постараемся представить себе наглядно эту Эдисонову скалу. Мы знаем ее вес, длину, ширину, но об ее толщине в задаче ни слова не сказано. Почему Эдисон умолчал о ней? Не тут ли кроется разгадка?

Дознаемся же сами, какова должна быть толщина этой скалы. Прежде всего определим по весу ее объем. Скала гранитная, а сколько весит кубический метр гранита, мы можем узнать из справочника. В «таблице удельных весов» разных материалов находим, что удельный вес гранита, круглым числом, 3. Это значит, что кубический сантиметр гранита весит 3 г или кубический метр гранита весит 3 т. Одно вытекает из другого, потому что в кубическом метре миллион кубических сантиметров, а в одной тонне – миллион граммов. Но если каждый кубический метр Эдисоновой глыбы весит 3 т, а весу в глыбе как раз 3 т, то ясно, что объем ее – всего один кубический метр. При таком небольшом объеме глыба однако растянулась в длину на 100 футов, а в высоту – на 15 футов.


Рис. 2. Задача Эдисона: надо без всяких орудий сдвинуть с места трехтонную гранитную скалу в 100 футов длины и 15 футов высоты


Очевидно, она очень тонка. Прикинем, какой она толщины. Объем, как известно, получается умножением длины на ширину и на толщину. Следовательно, разделив объем на длину и на ширину, мы узнаем толщину. Так и поступим с объемом нашей скалы: разделим 1 кубометр сначала на 100 футов (т. е. на 30 м) потом на 15 футов (т. е. примерно на 5 м), а еще лучше – сразу на 30 × 5, т. е. на 150. Что же получится? Всего 1/150 м, или около 7 миллиметров.


Рис. 3. Вот какова скала в задаче Эдисона


Вот какова толщина Эдисоновой скалы: только 7 мм! На острове возвышается, мы видим, тонкая гранитная стенка, своего рода диковинка природы. Опрокинуть подобную стенку ничуть не трудно даже голыми руками: напереть на нее покрепче или навалиться на нее с разбегу – и она не устоит.

От Москвы до Петербурга

Вы сейчас убедились, как полезно знать то, что в физике и технике называется «удельным весом» материала, т. е. вес одного его кубического сантиметра (в граммах).

Если вам известно, например, что удельный вес железа около 8, то вы сможете определить простым расчетом вес любого железного изделия, зная только его объем. Для этого вам не понадобится класть изделие на весы, а достаточно только умножить число кубических сантиметров его объема на 8. Часто это единственный способ узнать вес тела, – например, когда требуется определить заранее, сколько будет весить изделие, еще не изготовленное, а только обозначенное на рабочем чертеже.

Возьмем такую задачу:


Сколько весит железная телеграфная проволока, соединяющая Москву с Петербургом? Толщина проволоки 4 мм, длина 650 км.


Решить эту задачу можно, конечно, только расчетом, – не сматывать же проволоку с телеграфных столбов! Найдем сначала объем проволоки. Для этого, по правилам геометрии, нужно величину поперечного сечения проволоки умножить на ее длину. Площадь сечения нашей проволоки есть площадь кружка диаметром 4 мм, или 0,4 см. Она равна, как учит геометрия:


3,14 × 0,22 = 0,126 см2.


Длина же проволоки


650 км = 650 000 м = 65 000 000 см.


Значит, объем проволоки


0,126 × 65 000 000 = 8 190 000 см3,


а круглым счетом – 8 млн. см3. Так как каждый кубический сантиметр железа весит, мы знаем, 8 г, то вес провода Москва – Ленинград равен:


8 × 8 000 000 = 64 000 000 г = 64 т.


Это, примерно, вес паровоза. Если бы на одну чашку весов можно было положить моток телеграфной проволоки, соединяющей Москву с Питером, то на другую чашку надо было бы для равновесия вкатить целый паровоз.

Сходным расчетом могли бы вы узнать, сколько тонн проволоки понадобилось бы для телеграфного соединения Земли с Луной, – нужды нет, что на деле протянуть такой провод невозможно. Раз известно расстояние от Земли до Луны, задана толщина проволоки и имеется удельный вес материала, то все остальное можно выполнить просто карандашом на бумаге.

Сейчас мы проделаем еще более удивительный расчет в этом роде.

От Земли до Солнца

Что может быть нежнее и тоньше паутинной нити? Тонкость ее вошла в поговорку, и недаром: нить паутины в десять раз тоньше волоса; поперечник ее равен только 0,005 мм. Этой необычайной тонкостью объясняется легкость паутины, потому что сам по себе материал ее не так уж легок. Удельный его вес, т. е. вес 1 см3, составляет 1 г; значит, паутина тяжелее дубовой древесины, и только своей исключительной тонкости обязана она тем, что весит так ничтожно мало. Теперь мы сообщили читателю все данные для решения следующей интересной задачи (придуманной нашим известным физиком A.B. Цингером):


Сколько весила бы паутина, протянутая от Земли до Солнца, т. е. на расстоянии 150 млн. км?


Ответить, даже приблизительно, на этот вопрос, не производя расчета, едва ли кому удастся: расстояние до Солнца слишком огромно, а паутина чересчур тонка, чтобы возможно было предугадать ответ. Произведем же выкладки; они те же, что и для телеграфной проволоки предыдущей задачи.

Найдем площадь разреза паутины, зная, что диаметр ее равен 0,005 мм, или 0,0005 см.


3,14 × 0,00 0252 = около 0,0000002 см2.


Длина паутинной нити:


150 000 000 км = 15 000 000 000 000 см.


Отсюда определяется объем всей нити:

0,0000002 × 15 000 000 000 000 = 8 000 000 см3.


Мы знаем, что 1 см3 материала паутинной нити весит 1 г; поэтому вес нашей воображаемой паутины


3 000 000 г = 3 000 кг = 3 т.


Итак, паутинная нить, протянутая от Земли до самого Солнца, весила бы только 3 т! Ее можно было бы увезти на хорошем грузовике!

 

Заглянуть внутрь отливки

Знание удельного веса дает возможность, не распиливая изделия, как бы заглянуть внутрь него и установить, есть ли в нем пустоты, или же оно сплошное. Приведем пример.


Пусть у вас в руках медное изделие, – скажем, статуэтка, – и вы желаете узнать: сплошная она или внутри нее имеется полость? Просверливать, вообще повреждать статуэтку вы не желаете, конечно. Как поступить?


Прежде всего нужно определить объем статуэтки. Для этого наливаем в прямоугольную банку воду, замечаем высоту уровня воды и погружаем нашу статуэтку: по повышению уровня воды легко вычислить объем изделия. Пусть ширина банки 12 см, длина 15 м, а уровень воды поднялся на 1,5 см. Тогда объем воды, вытесненной изделием, равен 12 × 16 × 1,5 = 270 см3. Но эта прибавка есть, конечно, объем статуэтки. 1 см3 меди весит около 9 г. Поэтому, если бы вещь была сплошная, она весила бы примерно


270 × 9 = 2 430 г.


Теперь вы обращаетесь к весам (без которых в данном случае обойтись нельзя) и узнаете, что в действительности статуэтка весит всего 2 200 г, т. е. на 230 г меньше. Это показывает, что внутри нее имеется одна или несколько полостей, общий объем которых равен объему недостающих 230 г меди. Какой объем занимают 230 г меди? Мы узнаем это, разделив 230 на 9. Получим 25 1/2 см3.


Рис. 4. Простой способ определить объем статуэтки


Таким образом, не повреждая статуэтки, мы узнали не только то, что статуэтка заключает внутри себя полость или несколько полостей, но определили даже и объем этих пустот – около 25 см3.

Какой металл самый тяжелый?

В обиходе свинец считается тяжелым металлом. Он тяжелее цинка, олова, железа, меди, но все же его нельзя назвать самым тяжелым металлом. Ртуть, жидкий металл, тяжелее свинца; если бросить в ртуть кусок свинца, он не потонет в ней, а будет держаться на поверхности. Литровую бутылку ртути вы с трудом поднимете одной рукой: она весит без малого 14 кг. Однако и ртуть не самый тяжелый металл: золото и платина тяжелее ртути раза в полтора.

Рекорд же тяжеловесности побивают редкие металлы – иридий и осмий: они почти втрое тяжелее железа и более чем в сто раз тяжелее пробки; понадобилось бы 110 обыкновенных пробок, чтобы уравновесить одну иридиевую или осмиевую пробку таких же размеров.

Приводим для справок удельный вес некоторых металлов:

Какой металл самый легкий?

Техники называют «легкими» все те металлы, которые легче железа в два и более раз. Самый распространенный легкий металл, применяемый в технике, – алюминий, который легче железа втрое. Еще легковеснее металл магний: он легче алюминия в 1 1/2 раза. В последнее время техника стала пользоваться для изделий сплавом алюминия с магнием, известным под названием «электрон». Этот сплав, по прочности не уступающий стали, легче ее в четыре раза. Самый же легкий из всех металлов – литий – в технике пока еще не применяется. Литий не тяжелее еловой древесины; брошенный в воду, он не тонет.

Если сравнить между собою самый тяжелый и самый легкий металл – иридий и литий, то окажется, что первый весит больше второго в 40 с лишком раз.

Вот удельные веса некоторых легких металлов:

Две бороны

Часто смешивают вес и давление. Между тем это вовсе не одно и то же. Вещь может обладать значительным весом и все же оказывать на свою опору ничтожное давление. Наоборот, иная вещь при малом весе производит на опору большое давление. Из следующего примера вы сможете уяснить себе различие между весом и давлением, а заодно поймете и то, как нужно рассчитывать давление, производимое предметом на свою опору.


В поле работают две бороны одинакового устройства – одна о 20 зубьях, другая о 60. Первая весит вместе с грузом 60 кг, вторая – 120 кг. Какая борона работает глубже?


Легко сообразить, что глубже должны проникать в землю зубья той бороны, на которые напирает большая сила. В первой бороне общая нагрузка в 60 кг распределяется на 20 зубьев; следовательно, на каждый зуб приходится нагрузка в 3 кг. Во второй бороне на каждый зуб приходится всего 120/60, т. е. 2 кг. Значит, хотя вторая борона в общем тяжелее первой, зубья ее должны уходить в почву мельче. Давление на каждый зуб у первой бороны больше, чем у второй.

Квашеная капуста

Рассмотрим еще один расчет давления.


Две кадки с квашеной капустой покрыты лежащими на капусте деревянными кругами с камнями. В одной кадке круг имеет в поперечнике 24 см и нагружен 10 кг; в другой поперечник круга равен 32 см, а груз – 16 кг. В какой кадке капуста находится под большим давлением?


Давление, очевидно, больше в той кадке, где на каждый квадратный сантиметр приходится больший груз. В первой кадке груз в 10 кг распределяется на площадь в 3,14 × 10000 × 12 × 12 = 452 см, и, значит, на 1 см2 приходится 10 000/452, т. е. около 22 г. Во второй кадке давление на 1 см2 составляет 16000/804, т. е. менее 20 г. Следовательно, в первой кадке капуста сдавлена сильнее.

Следует отличать давление от силы давления. Давление есть та сила, с которой тело надавливает на один квадратный сантиметр опоры. В примере с капустой сила давления камней есть 10 кг и 16 кг, давление же – 22 г/см2 и 20 г/см2. Зная это, вы сможете уже самостоятельно выполнять расчеты, относящиеся к давлению.

Трактор и лошадь

Тяжелый гусеничный трактор хорошо держится на таком рыхлом грунте, в котором увязают ноги лошадей и даже людей, гораздо более легких (рис. 5).

Чем это объяснить?


Рис. 5. Почему гусеничный трактор не проваливается там, где увязает лошадь?


После сказанного раньше вы без труда разберетесь в этом. Увязание в грунте зависит не от веса вещи, а от ее давления, от той доли веса, которая приходится на квадратный сантиметр опоры. Огромный вес трактора распределяется на довольно большую поверхность его «гусениц», надетых на колеса. Поэтому на один квадратный сантиметр опоры трактора приходится сравнительно небольшой вес – около сотни граммов, не больше. Напротив, вес лошади и человека распределяется на небольшую площадь копыт или ступней, так что на квадратный их сантиметр приходится у лошади около 1 200 г, а у человека – 500 г, т. е. гораздо больше, чем у трактора. Даже тяжелый военный танк давит на квадратный сантиметр с силою, лишь немного большею, чем человек: около 600 граммов.

Неудивительно, что человек и лошадь вдавливаются в почву глубже, чем гусеничный трактор.

По той же причине не проваливается на рыхлом снегу человек, идущий на лыжах, хотя без лыж он на том же снегу удержаться не может.

1То же касается и настоящего издания. – (Здесь и далее примеч. науч. ред.)
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18 
Рейтинг@Mail.ru