bannerbannerbanner
полная версияOn Germinal Selection as a Source of Definite Variation

Weismann August
On Germinal Selection as a Source of Definite Variation

I am perfectly well aware how schematic my presentation of this process is, and must be at present, owing mainly to our inability to gain exact knowledge concerning the fundamental germinal constituents here assumed. But I regard its existence as assured, although I by no means underrate the fact that eminent thinkers, like Herbert Spencer, contest its validity and believe they are warranted in assuming a germ which is composed of similar units. I strongly doubt whether even so much as a formal explanation of the phenomena can be arrived at in this manner. So far as direct observation is concerned, the two theories stand on an equal footing, for neither my dissimilar, nor Spencer's similar, units of germinal substance can be seen directly.

The attempt has been recently made to discredit my Anlagen, or constitutional germ-elements, on the ground that they are simply a subtilised reproduction of Bonnet's old theory of preformation.18 This impression is very likely based upon ignorance of the real character of Bonnet's theory. I will not go into further details here, particularly as Whitman, in several excellently written and finely conceived essays, has recently afforded opportunity for every one to inform himself on the subject. My determinants and groups of determinants have nothing to do with the preformations of Bonnet; in a sense they are the exact opposites of them; they are simply those living parts of the germ whose presence determines the appearance of a definite organ of a definite character in the course of normal evolution. In this form they appear to me to be an absolutely necessary and unavoidable inference from the facts. There must be contained in the germ parts that correspond to definite parts of the complete organism, that is, parts that constitute the reason why such other parts are formed.

It is conceded even by my opponents that the reason why one egg produces a chicken and another a duck is not to be sought in external conditions, but lies in a difference of the germinal substance. Nor can they deny that a difference of germinal substance must also constitute the reason why a slight hereditary difference should exist between two filial organisms. Should there now, in a possible instance, be present between them a second, a third, a fourth, or a hundredth difference of hereditary character, each of which could vary from the germ, then, certainly, some second, third, fourth, or hundredth part of the germ must have been different; for whence, otherwise, should the heredity of the differences be derived, seeing that external influences affecting the organism in the course of evolution induce only non-transmissible and transient deviations? But the fact that every complex organism is actually composed of a very large number of parts independently alterable from the germ, follows not only from the comparison of allied species, but also and principally from the experiments long conducted by man in artificial selection, and by the consequent and not infrequent change of only a single part which happens to claim his interest; for example, the tail-feathers of the cock, the fruit of the gooseberry, the color of a single feather or group of feathers, and so on. But a still more cogent proof is furnished by the degeneration of parts grown useless, for this process can be carried on to almost any extent without the rest of the body necessarily becoming involved in sympathetic alteration. Whole members may become rudimentary, like the hind limbs of the whale, or it may be only single toes or parts of toes; the whole wing may degenerate in the females of a butterfly species, or only a small circular group of wing-scales, in the place of which a so-called "window" arises. A single vein of the wing also may degenerate and disappear, or the process may affect only a part of it, and this may happen in one sex only of a species. In such cases the rest of the body may remain absolutely unaltered; only a stone is taken out of the mosaic.

The assumption, thus, appears to me irresistible, that every such hereditary and likewise independent and very slight change of the body rests on some alteration of a single definite particle of the germinal substance, and not as Spencer and his followers would have it, on a change of all the units of the germ. If the germinal substance consisted wholly of like units, then in every change, were it only of a single character, each of these units would have to undergo exactly the same modification. Now I do not see how this is possible.

But it may be that Spencer's assumption is the simpler one? Quite the contrary, its simplicity is merely apparent. Whilst my theory needs for each modification only a modification of one constitutional element of the germ, that is, of one particle of the germinal substance, according to Spencer every particle of that substance must change, for they are all supposed to be and to remain alike. But seeing that all hereditary differences, be they of individuals, races, or species, must be contained in the germ, the obligation rests on these similar units, or rather the capacity is required of them, to produce in themselves a truly enormous number of differences. But this is possible only provided their composition is an exceedingly complex one, or only on the condition that in every one of them are contained as many alterable particles as according to my view there are contained determinants in the whole germ. The differences that I put into the whole germ, Spencer and his followers are obliged to put into every single unit of the germinal substance. My position on this point appears to me incontrovertible so long as it is certain that the single characters can vary hereditarily; for, if a thing can vary independently, that is, of its own accord, and from the germ, then that thing must be represented in the germ by some particle of the substance, and be represented there in such wise that a change of the representative particle produces no other change in the organism developing from the germ than such as are connected with the part which depends on it. I conceive that even on the assumption of my constitutional elements (Anlagen) the germ-plasm is complex enough, and that there is no need of increasing its complexity to a fabulous extent. Be that as it may, the person who fancies he can produce a complex organism from a really simple germinal substance is mistaken: he has not yet thoroughly pondered the problem. The so-called "epigenetic" theory with its similar germinal units is therefore naught else than an evolution-theory where the primary constitutional elements are reduced to the molecules and atoms—a view which in my judgment is inadmissible. A real epigenesis from absolutely homogeneous and not merely like units is not thinkable.

All value has been denied my doctrine of determinants19 on the ground that it only shifts the riddles of evolution to an invisible terrain where it is impossible for research to gain a foothold.

 

Now I have indeed to admit that no information can be gained concerning my determinants, either with the aided or with the unaided eye. But fortunately there exists in man another organ which may be of use in fathoming the riddles of nature and this organ which is called the brain has in times past often borne him out in the assumption of invisible entities—entities that have not always proved unfruitful for science by reason of that defect, in proof whereof we may instance the familiar assumptions of atoms and molecules. Probably the biophores also will be included under that head if the determinants should be adjudged utterly unproductive. But so far I have always held that assumptions of this kind are really productive, if they are only capable of being used, so to speak, as a formula, whereby to perform our computations, unconcerned for the time being as to what shall be its subsequent fate. Now, as I take it, the determinants have had fruitful results, as their application to various biological problems shows. Is it no advance that we are able to reduce the scission of a form of life into two or several forms subject to separately continued but recurrent changes,—I refer to dimorphism and polymorphism,—that we are able to reduce such phenomena to the formula of male, female, and worker determinants? It has been, I think, rendered conceivable how these diverse and extremely minute adaptations could have developed side by side in the same germ-plasm, under the guidance of selection; how sterile forms could be hereditarily established and transformed in just that manner which best suits with their special duties; and how they themselves under the right circumstances could subsequently split up into two or even into three new forms. Surely at least the unclear conception of an adaptively transformative influence of food must be discarded. It is true, we cannot penetrate by this hypothesis to the last root of the phenomena. The hotspurs of biology, who clamor to know forthwith how the molecules behave, will scarcely repress their dissatisfaction20 with such provisional knowledge—forgetful that all our knowledge is and remains throughout provisional.

But I shall not enter more minutely into the question whether epigenesis or evolution is the right foundation of the theory of development, but shall content myself with having shown, first, that it is illusory to imagine that epigenesis admits of a simpler structure of the germ, (the precise opposite is true,) and secondly, that there are phenomena that can be understood only by an evolution-theory. Such a phenomenon is the guidance of variation by utility, which we have considered to-day. For without primary constituents of the germ, whether they are called as I call them, determinants, or something else, germinal selection, or guidance of variation by personal selection, is impossible; for where all units are alike there can be no struggle, no preference of the best. And yet such a guidance of variation exists and demands its explanation, and the early assumptions of a "definitely directed variation" such as Nägeli and Askenasy made are insufficient, for the reason that they posit only internal forces as the foundations thereof, and because, as I have attempted to show, the harmony of the direction of variation with the requirements of the conditions of life subsists and represents the riddle to be solved. The degree of adaptiveness which a part possesses itself evokes the direction of variation of that part.

This proposition seems to me to round off the whole theory of selection and to give to it that degree of inner perfection and completeness which is necessary to protect it against the many doubts which have gathered around it on all sides like so many lowering thunder-clouds. The moment variation is determined substantially though not exclusively by the adaptiveness itself, all these doubts fall to the ground, with one exception, that of the utility of the initial steps. But just this objection is the least weighty. Without doubt the theory requires that the initial steps of a variation should also have selective value; otherwise personal selection and hence germinal selection could not set in. Since, however, as I have before pointed out, in no case can we pretend to a judgment regarding the selective value of a modification, or have any experience thereof, therefore the assumption that in a given case where a character is transformed the original initial steps of the variation did have selective value, is not only as probable as the opposed assumption that they had none, but is infinitely more probable, for with this we can give an intelligible explanation of the mysterious fact of adaptation, while with that we cannot. Consequently, unless we are resolved to give up all attempts whatsoever at explanation, we are forced to the assumption that the initial steps of all actually affected adaptations possessed selective value.

The principal and fundamental objection that selection is unable to create the variations with which it works, is removed by the apprehension that a germinal selection exists. Natural selection is not compelled to wait until "chance" presents the favorable variations, but supposing merely that the groundwork for favorable variations is present in the transforming species, that is, supposing merely that in the constitutional basis of the part to be changed are contained components which render favorable variations possible by a change of their numerical ratio, then those variations must occur, for the reason that quantitative fluctuations are always happening, and they must also be augmented as soon as personal selection intervenes and permanently holds over them her protecting hand. Not only is the marvelous certainty and exactitude with which adaptation has operated in so many individual cases, rendered intelligible in this manner, but what is more difficult, we are able to understand the simultaneity of numerous and totally different modifications of the most diverse parts co-operant towards some collective end, such as we see so frequently occur, for example, in the simultaneous rise of instincts and protective similarities, or in the harmonious and simultaneous augmentation of two co-operant but independent organs, as of the eye and of the centre of vision, or of the nerve and its muscle, etc.

The "secret law," of which Wolff prophetically speaks in his criticism of selection, is in all likelihood naught else than germinal selection. This it is that brings it about that the necessary variations are always present, that symmetrical parts, for example, the two eyes, usually vary alike, but under circumstances may vary differently, for example, the two visual halves of soles; that homodynamic parts, (for instance, the member-pairs of Arthropoda,) have frequently varied alike, and not infrequently and in conformity with the needs of the animal, have varied differently. It brings it about also that conversely species of quite different fundamental constitutions occasionally vary alike, as instances of mimicry and numerous other cases of convergence show us. As soon as utility itself is supposed to exercise a determinative influence on the direction of variation, we get an insight into the entire process and into much else besides that has hitherto been regarded as a stumbling-block to the theory of selection, and which did indeed present difficulties that for the moment were insuperable—as, for example, the like-directed variation of a large number of already existing similar parts, seen in the origin of feathers from the scales of reptiles. The utility in the last-mentioned instance consisted, not in the transformation of one or two, but of all the scales; consequently the line of variation of all the scales must have been started simultaneously in the same direction. A large part of the objections to the theory of selection that have been recently brought forward by the acutest critics, as for example by Wigand, but particularly by Wolff,21 find, as I believe, their refutation in this doctrine of germinal selection. The principle extends precisely as far as utility extends, inasmuch as it creates, not only the direction of variation for every increase or diminution demanded by the circumstances, but also every qualitative direction of variation attainable by changes of quantity, so far as that is at all possible for the organism in question.

Considering also the contrary process, the degeneration of useless parts by the cessation of selection in regard to the normal size of that part, a clear light is shed on that whole complex system of ascending and descending modifications which makes up most of the transformations of a living form, and we are led to understand how the fore extremity of a mammal can change into a fin at the same time that the hinder extremity is growing rudimentary, or how one or two toes of a hoofed animal can continue to develop more and more powerfully, whilst the others in the same degree grow weaker and weaker until finally they have disappeared entirely from the germ of most of the individuals of the species.

Possibly some of that large body of inquirers, mostly paleontologists, who till now have considered the Lamarckian principle indispensable for the explanation of these phenomena—perhaps some, I say, will not utterly close their eyes to the insight that germinal selection performs the same services for the understanding of observed transformations, particularly of the degeneration of superfluous parts, that a heredity of acquired characters would perform, without rendering necessary so violent an assumption. I have always conceded that many transformations actually do run parallel to the use and disuse of the parts,22 that therefore it does really look as if functional acquisitions of the individual life were hereditary. But if it be found that passively functioning parts, that is, parts which are not alterable during the individual life by function, obey the same laws and also degenerate when they become useless, then we shall scarcely be able to refuse our assent to a view which explains both cases. It certainly cannot be the physiological function which provokes modifications in the individual, which are then subsequently transmitted to the germ and in this way made hereditary, if functionless parts also change when they become useless. It is precisely this uselessness, then, from which the initial impulse emanates, and the primary modification is not in the soma but in the germ.

The Lamarckians were right when they maintained that the factor for which hitherto the name of natural selection had been exclusively reserved, viz., personal selection, was insufficient for the explanation of the phenomena. They were also right when they declared that panmixia in the form in which until recently I held the theory was also insufficient to explain the degeneration of parts that had grown useless, but they erred when they ascribed hereditary effects to the selection-processes which are enacted among the parts of the body (Wilhelm Roux) and which are rightly regarded as the results of functioning. And they did this, moreover, as they themselves admit, not because the facts of heredity directly and unmistakably required it, but because they saw no other possibility of explaining many phenomena of transformation. I am fain to relinquish myself to the hope that now after another explanation has been found, a reconciliation and unification of the hostile views is not so very distant, and that then, we can continue our work together on the newly laid foundations.

 

That the application of the Malthusian principle was thoroughly justified is now clear. The entire process of the development of living forms is guided by this principle. The struggle for existence, videlicet, for food and propagation, takes place at all the stages of life between all orders of living units from the biophores recently disclosed upwards to the elements that are accessible to direct observation, to the cells, and still higher up, to individuals and colonies. Consequently, in all the divers orders of biological units lying between the two extremes of biophores and colonies, the modifications must be controlled by selective processes; therefore, these govern every change of living forms no matter what its significance, and bring it about that the latter fit their conditions of life as wax does the mould; and the various stages of these processes, as enacted between the divers orders of biological units, in all organisms not absolutely simple, are involved in incessant and mutual interaction. The three principal stages of selection, that of personal selection23 as it was enunciated by Darwin and Wallace, that of histonal selection as it was established by Wilhelm Roux in the form of a "struggle of the parts," and finally that of germinal selection whose existence and efficacy I have endeavored to substantiate in this article—these are the factors that have co-operated to maintain the forms of life in a constant state of viability and to adapt them to their conditions of life, now modifying them pari passu with their environment, and now maintaining them on the stage attained, when that environment is not altered.

Everything is adapted in animate nature24 and has been from the first beginnings of life; for adaptiveness of organisation is here equivalent to the power to exist, and they alone have had the power to exist who have permanently existed. We know of only one natural principle of explanation for this fact—that of selection of the picking out of those having the power to exist from those having the power to originate. If there is any solution possible to the riddle of adaptiveness to ends,—a riddle held by former generations to be insoluble,—it can be obtained only through the assistance of this principle of the self-regulation of the originating organisms, and we should not turn our faces and flee at the sight of the first difficulties that meet its application, but should look to it whether the apparent effects of this single principle of explanation are not founded in the imperfect application that is made of it.

If I am not mistaken the situation is as follows: We had remained standing half way. We had applied the principle, but only to a portion of the natural units engaged in struggle. If we apply the principle throughout we reach a satisfactory explanation. Selection of persons alone is not sufficient to explain the phenomena; germinal selection must be added. Germinal selection is the last consequence of the application of the principle of Malthus to living nature. It is true it leads us into a terrain which cannot be submitted directly to observation by means of our organs of touch and by our eyes, but it shares this disadvantage in common with all other ultimate inferences in natural science, even in the domain of inorganic nature: in the end all of them lead us into hypothetical regions. If we are not disposed to follow here, nothing remains but to abandon utterly the hope of explaining the adaptive character of life—a renunciation which is not likely to gain our approval when we reflect that by the other method is actually offered at least in principle, not only a broad insight into the adaptation of the single forms of life to their conditions, but also into the mode of formation of the living world as a whole. The variety of the organised world, its transformation by adaptation to new, and by reversed adaptation to old conditions, the inequality of the systematic groups, the attainment of the same ends by different means, that is, by different organisations, and a thousand and one other things assume on this hypothesis in a certain measure an intelligible form, whilst without it they remain lifeless facts.

And so in this case, I may say, that again doubt is the parent of all progress. For the idea of germinal selection has its roots in the necessity of putting something else in the place of the Lamarckian principle, after that had been recognised as inadequate. That principle did, indeed, seem to offer an easy explanation of many phenomena, but others stood in open contradiction to it, and consequently that was the point at which the lever had to be applied if we were to penetrate deeper into the phenomena in question. For it is at the places where previous views are at variance with facts that the divining rod of the well-seekers must thrice nod. There lie the hidden waters of knowledge, and they will leap forth as from an artesian well if he who bores will only drive undaunted his drill into their depths.

18Oscar Hertwig, Zeit-und Streitfragen der Biologie, Jena, 1894. It is customary now to look upon the preformation-theory of Bonnet as a discarded monstrosity, and on the epigenesis of K. F. Wolff as the only legitimate view, and to draw a parallel between these two and what might be called to-day "evolution" [i. e. unfoldment] and epigenesis. The evolution, or unfoldment, of Bonnet and Harvey, however, was something totally different from modern doctrines of evolution, and Whitman is quite right when he says that even my theory of determinants would have appeared to the inquirers of the last century as "extravagant epigenesis." Biologists in that day were concerned with quite different questions from what they are at present, and although now we probably all share the conviction of Wolff that new characters do arise in the course of evolution, yet the acceptance of this view is far from settling the question as to how these new characters are established in the germ-substance—for in this substance they certainly must have their foundation. When, therefore, O. Hertwig laments over my regarding evolution and not epigenesis as the correct foundation of the theory of development, his sorrow is almost as naïve as is the statement of Bourne that epigenesis is a fact and not a theory "a statement of morphological fact," Science Progress, April, 1894, page 108), or, as is the latter's unconsciousness that facts originally receive their scientific significance from thought, i. e. from their interpretation and combination, and that thought is theory. And when S. Minot, as the leader of the embryologists, carries his zeal to the pitch of issuing a general pronunciamento against me as a corruptor of youth, in which he declares it to be a "scientific duty to protest in the most positive manner against Weismann's theory," I wonder greatly that he does not suggest the casting of a general ballot in the matter. (See the Biologisches Centralblatt of August 1, 1895.) We see how with these gentlemen the wisdom of the recitation-room regarding the infallibility of epigenesis has grown into a dogma, and whoever ventures to disturb its foundations must be burnt as a heretic.
19Oscar Hertwig, Zeit- und Streitfragen der Biologie, Jena, 1894.
20Nor will those, who demand a demonstration of "how the biophores and determinants are constituted in every case, and must be arranged in the architecture of the germ-plasm." (O. Hertwig, loc. cit., p. 137). As if any living being could have the temerity even so much as to guess at the actual ultimate phenomena in evolution and heredity! The whole question is a matter of symbols only, just as it is in the matter of "forces," "atoms," "ether undulations," etc., the only difference being that in biology we stumble much earlier upon the unknown than in physics.
21"Beiträge zur Kritik der Darwin'schen Lehre," Biologisches Centralblatt, Vol. X., p. 449. 1890.
22Poulton has adverted to the fact that this is nevertheless not always the case; for example, it is not so with the teeth, whose shape it had also been sought to reduce to the mechanical effects of pressure and friction. See "The Theory of Selection" in The Proceedings of the Boston Society of Natural History, Vol. XX., page 389. 1894.
23As the highest stage of selective processes must be regarded that between the highest biological units, the colonies or cormi—a stage, however, which is not essentially different from personal selection. In this stage the persons enact the part that the organs play in personal selection. Like their prototypes they also battle with one another for food and in this way maintain harmony in the colony. But the result of the struggle endures only during the life of the individual colony and can be transmitted through the germ-cells to the following generation as little as can histological changes provoked by use in the individual person. Only that which issues from the germ has duration.
24This statement has often been declared extravagant, and it is so if it is taken in its strict literalness. On the other hand, it would also seem, by a more liberal interpretation, as if there existed non-adaptive characters, for example, rudimentary organs. Adaptiveness, however, is never absolute but always conditioned, that is, is never greater than outward and inward circumstances permit. Moreover, an organ can only disappear gradually and slowly when it has become superfluous; yet this does not prevent our recognising every stage of its degeneration as adapted when compared with its precursor. Further, it does not militate against the correctness of the above proposition that there are also characters whose fitness consists in their being the necessary accompaniments of other directly adapted features, as, for instance, the red color of the blood.
Рейтинг@Mail.ru