bannerbannerbanner
полная версияOn Germinal Selection as a Source of Definite Variation

Weismann August
On Germinal Selection as a Source of Definite Variation

The first and most natural explanation will be this—that through selection the zero-point, about which, figuratively speaking, the organ may be said to oscillate in its plus and minus variations, is displaced upwards or downwards. Darwin himself assumed that the variations oscillated about a mean point, and the statistical researches of Galton, Weldon, and others have furnished a proof of the assumption. If selection, now, always picks out the plus variations for imitation, perforce, then, the mean or zero-point will be displaced in the upward direction, and the variations of the following generation will oscillate about a higher mean than before. This elevation of the zero-point of a variation would be continued in this manner until the total equilibrium of the organism was in danger of being disturbed.

There is involved here, however, an assumption which is by no means self-evident, that every advancement gained by the variation in question constitutes a new centre for the variations occurring in the following generation. That this is a fact, is proved by such actual results of selection as are obtained in the case of the Japanese cock. But the question remains, Why is this the fact?

Now here, I think, my theory of determinants gives a satisfactory answer. According to that theory every independently and hereditarily variable part is represented in the germ by a determinant, that is by a determinative group of vital units, whose size and power of assimilation correspond to the size and vigor of the part. These determinants multiply, as do all vital units, by growth and division, and necessarily they increase rapidly in every individual, and the more rapidly the greater the quantity of the germinal cells the individual produces. And since there is no more reason for excluding irregularities of passive nutrition, and of the supply of nutriment in these minute, microscopically invisible parts, than there is in the larger visible parts of the cells, tissues, and organs, consequently the descendants of a determinant can never all be exactly alike in size and capacity of assimilation, but they will oscillate in this respect to and fro about the maternal determinant as about their zero-point, and will be partly greater, partly smaller, and partly of the same size as that. In these oscillations, now, the material for further selection is presented, and in the inevitable fluctuations of the nutrient supply I see the reason why every stage attained becomes immediately the zero-point of new fluctuations, and consequently why the size of a part can be augmented or diminished by selection without limit, solely by the displacement of the zero-point of variation as the result of selection.

We should err, however, if we believed that we had penetrated to the root of the phenomenon by this insight. There is certainly some other and mightier factor involved here than the simple selection of persons and the consequent displacement of the zero-point of variation. It would seem, indeed, as if in one case, videlicet, in that of the Japanese cock, the augmentation of the character in question were completely explained by this factor alone. In fact, in this and similar cases we cannot penetrate deeper into the processes of variation, and therefore cannot say a priori whether other factors have or have not been involved in the augmentation of the character in question—other characters, that is, than the simple displacement of the zero-point. There is, however, another class of phyletic modifications, which point unmistakably to the conclusion that the displacement of the zero-point of variation by personal selection is not and cannot be the only factor in the determination and accomplishment of the direction of variation. I refer to retrogressive development, the gradual degeneration of parts or characters that have grown useless, the gradual disappearance of the eye in cave-animals, of the legs in snakes and whales, of the wings in certain female butterflies, in short, to that entire enormous mass of facts comprehended under the designation of "rudimentary organs."

I have endeavored on a previous occasion to point out the significance of the part played in the great process of animate evolution by these retrogressive growths, and I made at the time the statement that "the phenomena of retrogressive growth enabled us in a greater measure almost than those of progressive growth to penetrate to the causes which produce the transformations of animate nature." Although at that time13 I had no inkling of certain processes which today I shall seek to prove the existence of, yet my statement receives a fresh confirmation from these facts.

For, in most retrogressive processes active selection in Darwin's sense plays no part, and advocates of the Lamarckian principle, as above remarked, have rightly denied that active selection, that is, the selection of individuals possessing the useless organ in its most reduced state, is sufficient to explain the process of degeneration. I, for my part, have never assumed this, and I enunciated precisely on this account the principle of panmixia. Now, although this, as I still have no reason for doubting, is a perfectly correct principle, which really does have an essential and indispensable share in the process of retrogression, still it is not alone sufficient for a full explanation of the phenomena. My opponents, in advancing this objection, were right, to the extent indicated and as I expressly acknowledge, although they were unable to substitute anything positive in its stead or to render my explanation complete. The very fact of the cessation of control over the organ is sufficient to explain its degeneration, that is, its deterioration, the disharmony of its parts, but not the fact which actually and always occurs where an organ has become useless—viz., its gradual and unceasing diminution continuing for thousands and thousands of years culminating in its final and absolute effacement.

If, now, neither the selection of persons nor the cessation of personal selection can explain this phenomenon, assuredly some other principle must be the efficient cause here, and this cause I believe I have indicated in an essay written at the close of last year and only recently published.14 I call it germinal selection.

The principle in question reposes on the application, made some fifteen years ago by Wilhelm Roux, of the principle of selection to the parts of organisms—on the struggle of the parts, as he called it. If such a struggle obtains among organs, tissues, and cells, it must also obtain between the smallest and for us invisible vital particles, not only between those of the body-cells, strictly so called, but also between those of the germinal cells. Roux himself spoke of the struggle of the molecules, by which he presumably understood the smallest ultimate units of vital phenomena—elements which De Vries designated pangenes, Wiesner plasomes, and I biophores, after Brücke's ingenious conception15 of these invisible entities had been almost totally forgotten, or at least had lain unnoticed for thirty years. No struggle, as that is understood in the theory of selection, could take place between real molecules, for molecules are neither nourished, subject to growth, nor propagated.

 

The gradual degeneration of organs grown useless may be explained, now, by the theory of determinants very simply and without any co-operation on the part of active personal selection, as follows.

Nutrition, it is known, is not merely a passive process. A part is not only nourished but also actively nourishes itself, and the more vigorously, the more powerful and capable of assimilation it is. Hence powerful determinants in the germ will absorb nutriment more rapidly than weaker determinants. The latter, accordingly, will grow more slowly and will produce weaker descendants than the former.

Let us assume, now, that a part of the body, say the hinder extremities of the quadruped ancestors of our common whales, are rendered useless. Panmixia steps in, i. e., selection ceases to influence these organs. Individuals with large and individuals with small hind legs are equally favored in the struggle for existence.

From this fact alone would result a degradation of the organ, but of course it would not be very marked in extent, seeing that the minus variations which occur are no longer removed. According to our assumption, however, such minus variations repose on the weaker determinants of the germ, that is, on such as absorb nutriment less powerfully than the rest. And since every determinant battles stoutly with its neighbors for food, that is, takes to itself as much of it as it can, consonantly with its power of assimilation and proportionately to the nutrient supply, therefore the unimpoverished neighbors of this minus determinant will deprive it of its nutriment more rapidly than was the case with its more robust ancestors; hence, it will be unable to obtain the full quantum of food corresponding even to its weakened capacity of assimilation, and the result will be that its ancestors will be weakened still more. Inasmuch, now, as no weeding out of the weaker determinants of the hind leg by personal selection takes place on our hypothesis, inevitably the average strength of this determinant must slowly but constantly diminish, that is, the leg must grow smaller and smaller until finally it disappears altogether. The determinants16 of the useless organ are constantly at a disadvantage as compared with the determinants of their environment in the germinal tenement, because no assistance is offered to them by personal selection after they have once been weakened by a decrease of the passive nutrient influx. Nor is the degeneration stopped by the uninterrupted crossing of individuals in sexual propagation, but only slightly retarded. The number of individuals with weaker determinants must, despite this fact, go on increasing from generation to generation, so that soon every determinant that still happens to be endowed with exceptional vigor will be confronted by a decided overplus of weaker determinants, and by continued crossing therefore will become more and more impoverished. Panmixia is the indispensable precondition of the whole process; for owing to the fact that persons with weak determinants are just as capable of life as those with strong, owing to the fact that they cannot now, as formerly, when the organ was still useful, be removed by personal selection, solely by this means is a further weakening effected in the following generations—in short, only by this means are the determinants of the useless organ brought upon the inclined plane, down which they are destined slowly but incessantly to slide towards their completed extinction.

The foregoing explanation will be probably accepted as satisfactory in a purely formal regard, but it will be objected that, even granting this, it has not yet been proved to be the correct one. In answer I can of course adduce nothing except that it is at present the only one that can be given. It may be that the actual state of things in nature is different, but if it can be shown that a self-direction of variation merely from the need of it is at all conceivable by mechanical means, that in itself, it seems to me, is a decided gain. It must also not be forgotten that some process or other must take place in the germ-plasm when an organ becomes rudimentary, and that as the result of it this organ, and only this organ, must disappear. Now in what shall this process consist, if not in a modification of the constitution of the germ? And how could the effect of such a modification be limited only to one organ which was becoming rudimentary if the modification itself were not a local one? These are questions which it is incumbent on those to answer who conceive the germinal substance to be composed of like units.

Applying, now, the explanation derived from the disappearance of organs to the opposed transformation, namely, to the enlargement of a part, the presumption lies close at hand that the production of the long tail-feathers of the Japanese cock does not repose solely on the displacement directly effected by personal selection, of the zero-point of variation upwards, but that it is also fostered and strengthened by germinal selection. Were that not so, the phenomena of the transmutation of species, in so far as fresh growth and the enlargement and complication of organs already present are concerned, would not be a whit more intelligible than they were before. We should know probably how it comes to pass that the constitutional predisposition (group of determinants) of a single organ is intensified by selection, but the flood of objections against the theory of selection touching its inability to modify many parts at once would not be repressed by such knowledge. The initial impulse conditioning the independent maintenance of the useful direction of variation in the germ-plasm must rather be sought in the utility of the modification itself, and this also seems to me intelligible from the side of the theory. For as soon as personal selection favors the more powerful variations of a determinant, the moment that these come to predominate in the germ-plasm of the species, at once the tendency must arise for them to vary still more strongly in the plus direction, not solely because the zero-point has been pushed farther upwards, but because they themselves now oppose a relatively more powerful front to their neighbors, that is, actively absorb more nutriment, and upon the whole increase in vigor and produce more robust descendants. From the relative vigor or dynamic status of the particles of the germ-plasm, thus, will issue spontaneously an ascending line of variation, precisely as the facts of evolution require. For, as I have already said, it is not sufficient that the augmentation of a character should be brought about by uninterrupted personal selection, even supposing that the displacement of the zero-point were possible without germinal selection.

Thus, I think, may be explained how personal selection imparts the initial impulse to processes in the germ-plasm, which, when they are once set agoing, persist of themselves in the same direction, and are, therefore, in no need of the continued supplementary help of personal selection, as directed exclusively to a definite part. If but from time to time, that is, if upon the average the poorest individuals, the bearers of the weakest determinants, are eliminated, the variational direction of the part in question, now reposing on germinal selection, must persist, and it will very slowly but very surely increase until further development is impeded by its inutility and personal selection arrests the process, that is, ceases to eliminate the weaker individuals.

In this manner it becomes intelligible how a large number of modifications varying in kind and far more so in degree can be guided simultaneously by personal selection; how in strict conformity with its adaptive wants every part is modified, or preserved unmodified; how a given articulation can undergo modifications, causing it to disappear on one side, to grow in volume on another, and to continue unaltered on a third. For every part that is perfectly adapted, although it can fluctuate slightly, yet can never undergo a permanent alteration in the ascending or descending direction because every plus and every minus variation which has attained selective value would be eliminated by personal selection in the course of time. Therefore, a definite direction of variation cannot arise in such cases and we have also reached, as it seems to me, a satisfactory explanation of the constancy of well-adapted species and characters.

Hitherto I have spoken only of plus and minus variation. But there exist, as we know, not only variations of size but also variations of kind; and the coloration of the wings of butterflies, which we chose above as our example, would fall, according to the ordinary usage of speech, under just this head of variations of quality. The question arises, therefore, Have the principles just developed any claim to validity in the explanation of qualitative modifications?

In considering this question it should be carefully borne in mind that by far the largest part of the qualitative modifications falling under this head rest on quantitative changes. Of course, chemical transformations, which usually also involve quantitative alterations, cannot be reduced to the processes of augmentation described, inasmuch as these, by their very nature, can be effected only in living elements capable of increase by propagation; but the interference of selection does not begin originally with the constitutional predisposition (Anlagen) of the germ, i. e. with the determinants, but with the ultimate units of life, the biophores.

A determinant must be composed of heterogeneous biophores, and on their numerical proportion reposes, according to our hypothesis, their specific nature. If that proportion is altered, so also is the character of the determinant. But disturbances of this numerical proportion must result at once on proof of their usefulness, or as soon as the modifications determined thereby in the inward character of the determinant turn out to be of utility. For fluctuations of nutriment and the struggle for nutriment, with its sequent preference of the strongest, must take place between the various species of the biophores as well as between the species of the determinants. But changes in the quantitative ratios of the biophores appear to us qualitative changes in the corresponding determinants, somewhat as a simple augmentation of a determinant, for example, that of a hair, may on its development appear to us as a qualitative change, a spot on the skin where previously only isolated hairs stood being now densely crowded with them, and assuming thus the character of a downy piece of fur. The single hair need not have changed in this process, and yet the spot has virtually undergone a qualitative modification. The majority of the changes that appear to us qualitative rest on invisible quantitative changes, and such can be produced at all times and at all stages of the vital units by germinal selection. In a similar manner are induced the most varied qualitative changes of the corresponding determinants and of the characters conditioned thereby, just as changes in the numerical proportions of atoms produce essential changes in the properties of a chemical molecule.

 

In this way we acquire an approximate conception of the possible mechanical modus operandi of actual events—namely, of the manner in which the useful variations required by the conditions of life can always, that is, very frequently, make their appearance. This possibility is the sole condition of our being able to understand how different parts of the body, absolutely undefined in extent, can appear as variational units and vary in the same or in different directions, according to the special needs of the case, or as the conditions of life prescribe. Thus, for example, in the case of the butterfly's wings it rests entirely with utility to decide the size and the shape of the spots that shall vary simultaneously in the same direction. At one time the whole under surface of the wing appears as the variational unit and has the same color; at another the inside half, which is dark, is contrasted with the outside half which is bright; or the same contrast will exist between the anterior and posterior halves; or, finally, narrow stripes or line-shaped streaks will behave as variational units and form contrasts with manifold kinds of spots or with the broader intervals between them, with the result that the picture of a leaf or of another protected species is produced.

I must refrain from entering into the details of such cases and shall illustrate my views regarding the color-transformations of butterflies' wings by the simplest conceivable example—viz. that of the uniform change of color on the entire under surface of the wing.

Suppose, for example, that the ancestral species of a certain forest-butterfly habitually reposed on branches which hung near the ground and were covered with dry or rotten leaves; such a species would assume on its under surface a protective coloring which by its dark, brown, yellow, or red tints would tend toward similarity with such leaves. If, however, the descendants of this species should be subsequently compelled, no matter from what cause, to adopt the habit of resting on the green-leafed branches higher up, then from that period on the brown coloring would act less protectively than the shades verging towards green. And a process of selection will have set in which consisted first in giving preference only to such persons whose brown and yellow tints showed a tendency to green. Only on the assumption that such shades were possible by a displacement in the quantitative proportions of the different kinds of biophores composing the determinants of the scales affected, was a further development in the direction of green possible. Such being the case, however, that development had to result; because fluctuations in the numerical proportions of the biophores are always taking place, and consequently the material for germinal selection is always at hand. At present it is impossible to determine exactly the magnitude of the initial stages of the deviations thus brought about and promoted by the sexual blending of characters; but it may perhaps be ascertained in the future, with exceptionally favorable material. Pending such special observations, however, it can only be said a priori that slight changes in the composition of a determinant do not necessarily condition similar slight deviations of the corresponding character,—in this case the color,—just as slight changes in the atomic composition of a molecule may result in bestowing upon the latter widely different properties. As soon, however, as the beginning has been made and a definite direction has been imparted to the variation, as the result of this or that primary variation's being preferred, the selective process must continue until the highest degree of faithfulness required by the species in the imitation of fresh leaves has been attained.

That the foregoing process has actually taken place is evidenced not only by the presence of the beginnings of such transformations, as found for example in some greenish-tinted specimens of Kallima, but mainly by certain species of the South American genus Catonephele, all of which are forest-butterflies, and which, with many species having dark-brown under surfaces, present some also with bright green under surfaces—a green that is not like the fresh green of our beech and oak trees, but resembles the bright under surface of the cherry-laurel leaf, and is the color of the under surfaces of the thick, leathery leaves, colored dark-green above, borne by many trees in the tropics.

The difference between this and the old conception of the selection-process consists not only in the fact that a large number of individuals with the initial stages of the desired variation is present from the beginning, for always innumerable plus and minus variations exist, but principally in the circumstance that the constant uninterrupted progress of the process after it is once begun is assured, that there can never be a lack of progressively advantageous variations in a large number of individuals. Selection, therefore, is now not compelled to wait for accidental variations but produces such itself, whenever the required elements for the purpose are present. Now, where it is a question simply of the enlargement or diminution of a part, or of a part of a part, these variations are always present, and in modifications of quality they are at least present in many cases.

This is the only way in which I can see a possibility of explaining phenomena of mimicry—the imitation of one species by another. The useful variations must be produced in the germ itself by internal selection-processes if this class of facts is to be rendered intelligible. I refer to the mimicry of an exempt species by two or three other species, or, the aping of different exempt patterns by one species in need of protection. It must be conceded to Darwin and Wallace that some degree of similarity between the copy and the imitation was present from the start, at least in very many cases;17 but in no case would this have been sufficient had not slight shades of coloring afforded some hold for personal selection, and in this way furnished a basis for independent germinal selection acting only in the direction indicated. It would have been impossible for such a minute similarity in the design, and particularly in the shades of the coloration, ever to have arisen, if the process of adaptation rested entirely on personal selection. Were this so, a complete scale of the most varied shades of color must have been continually presented as variations in every species, which certainly is not the case. For example, when the exempt species Acræa Egina, whose coloration is a brick-red, a color common only in the genus Acræa, is mimicked by two other butterflies, a Papilio and a Pseudacræa, so deceptively that not only the cut of the wings and the pattern of their markings, but also that precise shade of brick-red, which is scarcely ever met with in diurnal butterflies, are produced, assuredly such a result cannot rest on accidental, but must be the outcome of a definitely directed, variation, produced by utility. We cannot assume that such a coloration has appeared as an accidental variation in just and in only these two species, which fly together with the Acræa in the same localities of the same country and same part of the world—the Gold Coast of Africa. It is conceivable, indeed, that non-directed variation should have accidentally produced this brick-red in a single case, but that it should have done so three times and in three species, which live together but are otherwise not related, is a far more violent and improbable assumption than that of a causal connexion of this coincidence. Now hundreds of cases of such mimicry exist in which the color-tints of the copy are met with again in more or less precise and sometimes in exceedingly exact imitations, and there are thousands of cases in which the color-tint of a bark, of a definite leaf, of a definite blossom, is repeated exactly in the protectively colored insect. In such cases there can be no question of accident, but the variations presented to personal selection must themselves have been produced by the principle of the survival of the fit! And this is effected, as I am inclined to believe, through such profound processes of selection in the interior of the germ-plasm as I have endeavored to sketch to you to-day under the title of germinal selection.

13In 1886. See my paper on "Retrogression in Nature," published in English in Nos. 105, 107, 108, and 109 of The Open Court, and also in my essays on Heredity, Jena, 1892.
14Neue Gedanken zur Vererbungsfrage, Jena, 1895.
15Delâge, in La structure du protoplasma et les théories sur l'hérédité, etc., Paris, 1895, is mistaken in attributing to Herbert Spencer the merit of having first pointed out the necessity of the assumption of biological units ranking between the molecule and the cell. Brücke set forth this idea three years previously to Spencer and established it exhaustively in a paper which in Germany at least is famous ("Elementarorganismen," Wiener Sitzungsberichte, October 10, 1861, Vol. XLIV., II., p. 381). Spencer's Principles of Biology appeared between 1864 and 1868; consequently there can be no dispute touching the priority of the idea. Strangely enough Delâge cites Brücke's essay in the Bibliographical Index at the end of his book correctly, although Brücke's name and views are nowhere mentioned in the book itself. It is to be observed, however, that the elementary organisms of Brücke are not merely the precursors of Spencer's "physiological units," but repose on much firmer foundations than the latter, which, as Delâge himself remarks, are at bottom nothing more than magnified molecules and not combinations of different molecules of such character as to produce necessarily phenomena of life. He aptly remarks on this point: "the physiological units of Spencer are only chemical molecules of greater complexity than the rest, and as he defines them they would be regarded as such by every chemist. He attributes to them no property essentially different from those of chemical molecules." Assimilation, growth, propagation, in short the attributes of life, are not attributed by Spencer to his units, while Brücke by his very designation "elementary organisms" expresses the idea of "ultimate living units," to use Wiesner's phrase. Of course this particular aspect of the vital units was not emphasised by Brücke with the same distinctness and sharpness as by recent inquirers, who took up Brücke's ideas thirty years after. I refer to the conception that the union of a definite combination of heterogeneous molecules into an invisibly small unit, forms the cradle or focus of the vital phenomena. This was first done and apparently on independent considerations by De Vries, and soon after by Wiesner, and subsequently by myself (De Vries, Intracelluläre Pangenesis, Jena, 1889; Wiesner, Die Elementarstructur and das Wachsthum der lebenden Substanz, Vienna, 1892; Weismann, Das Keimplasma, Jena, 1892). Let me say at the close of this note that it is not my intention in thus defending the rights of a great physiologist, to censure in the least the distinguished author of L'hérédité who has set himself a remarkably high standard of exactitude in such matters. Certainly, when we consider the enormous extent of the literature that had to be mastered to produce his book, embracing as it did all the various theories of recent times, such an oversight is quite excusable.
16I speak here of determinants, not of groups of determinants, which is the more correct expression, merely for the sake of brevity. It is a matter of course that a whole extremity, such as we have here chosen, cannot be represented in the germ by a single determinant only, but requires a large group of determinants.
17That this is not so in all cases has recently been shown by Dixey from observations on certain white butterflies of South America which mimic the Heliconids and in which a small, yellowish red streak on the under surface of the hind wing has served as the point of departure and groundwork of the development of a protective resemblance to quite differently colored Heliconids. "On the Relation of Mimetic Characters to the Original Form," in the Report of the British Association for 1894.
Рейтинг@Mail.ru