bannerbannerbanner
полная версияEssays Upon Heredity and Kindred Biological Problems

Weismann August
Essays Upon Heredity and Kindred Biological Problems

VIII.
THE SUPPOSED TRANSMISSION OF
MUTILATIONS.
1888

VIII.
THE SUPPOSED TRANSMISSION OF
MUTILATIONS

We know well the manner in which Lamarck imagined that the gradual transformation of species occurred, when he first made the attempt to penetrate into the mechanism of the process of evolution, and to ascertain the causes by which it is produced. In his opinion, a change in the structure of any part of an organism was chiefly brought about when the species in question met with new conditions of life and was thus forced to assume new habits. Such habits caused an increased or diminished activity, and therefore a stronger or weaker development, of certain parts, and the modified parts were then transmitted to the offspring. Inasmuch as the offspring continued to live under the same changed conditions, and kept up the altered manner of using the part in question, the inherited changes would be increased in the same direction during the course of their life, and would be further increased in each successive generation, until the greatest possible change had been effected.

In this way Lamarck was able to give an apparently satisfactory explanation of at any rate those changes which consist in the mere enlargement or diminution of a part; such, for instance, as the great length of neck in the swan and other swimming birds, which he believed to have been produced by the habit of stretching after food at the bottom of the water; or the webbed feet of the same animals, supposed to be produced by the habit of striking the water with outspread toes, etc. In this way he was also able to explain the disappearance of a part after it had ceased to be of use; as, for instance, the degeneration of the eyes of animals inhabiting caves or the sunless depths of lakes or the sea.

But it is obvious that such an explanation tacitly assumes that changes produced by use or disuse can be transmitted to the offspring; it assumes the transmission of acquired characters.

Lamarck made this assumption as a matter of course, and when half a century later Charles Darwin, his more fortunate successor, refounded the theory of organic evolution, he also believed that we could not entirely dispense with the Lamarckian principle of explanation, although he added the new and extremely far-reaching principle of natural selection. But he certainly attempted to decide whether the Lamarckian principle of the effects of use and disuse is truly efficient, by asking himself the question whether such changes, as for example those produced by exercise during an individual life, can be transmitted to the offspring. Many observations appeared to him, if not to prove the transmission directly, yet to render it extremely probable; and he thus came to the conclusion that there is no sufficient reason for denying the transmission of acquired changes. Hence, in Darwin’s works, use and disuse still play important parts as direct factors of transformation, in addition to natural selection.

Darwin was not only an original genius, but also an extraordinarily unbiassed and careful investigator. Whatever he expressed as his opinion had been carefully tested and considered. This impression is gained by every one who has studied Darwin’s writings, and perhaps it in part explains the fact that doubts as to the correctness of the Lamarckian principle adopted by him have only arisen during the last few years. These doubts have, however, culminated in the decided denial of the assumption that changes acquired by the body can be transmitted. I for one frankly admit that I was in this respect under the influence of Darwin for a long time, and that only by approaching the subject from an entirely different direction was I led to doubt the transmission of acquired characters. In the course of further investigations I gradually gained a more decided conviction that such transmission has no existence in fact.

Doubts on this point have been expressed not only by me but also by others, such as du Bois-Reymond and Pflüger. Indeed, concerning a certain class of acquired characters, viz. mutilations, the great German philosopher, Kant, has distinctly denied that transmission can take place293; and in more recent times Wilhelm His has expressed the same opinion294.

But if the transmission of acquired characters is truly impossible our theory of evolution must undergo material changes. We must completely abandon the Lamarckian principle, while the principle of Darwin and Wallace, viz. natural selection, will gain an immensely increased importance.

When I first expressed this opinion in my essay ‘On Heredity295,’ I was well aware of the consequences of such an idea. I knew well that apparently insurmountable obstacles would be raised against any explanation of evolution, from which the principle of the direct transformation of the species by external influences had been excluded. I therefore endeavoured to show that these difficulties are not in reality insurmountable, and that it is quite possible to explain certain phenomena, such as the degeneration of useless parts, without the aid of the Lamarckian principle. Furthermore it can be shown that a not inconsiderable number of instincts, viz. all those which are exercised only once in a lifetime, cannot possibly have arisen by transmitted practice. This fact renders it unnecessary to make use of the Lamarckian principle for the explanation of other kinds of instinct. I do not mean to deny the existence of phenomena for which such an explanation has not yet been found, or at least has not been brought forward; but on the other hand it appears to me that it has never been proved that we cannot dispense with the Lamarckian principle in the explanation of these phenomena. At any rate, I do not know of any facts which could induce us to abandon from the first any hope of finding an explanation without the aid of this hypothesis.

If we are able to prove that we may dispense with the assumption of the transmission of acquired characters in explaining such phenomena, of course it by no means follows that we must dispense with it; or, in other words, it does not follow that the transmission of acquired changes cannot take place. It would be as unsafe to make this assertion as to state of a ship seen at a great distance, that it is only moving by sails and not by steam simply because the movement appears to be explicable by sails alone. We ought first to attempt to show that the ship does not possess a steam-engine, or at least that the existence of such an engine cannot be proved.

I believe that I am able to show that the actual existence of the transmission of acquired characters cannot be directly proved; that there are no direct proofs supporting the Lamarckian principle.

If we ask for the facts which can be brought forward by the supporters of the theory of the transmission of acquired characters, if we inquire for the observations which induced Darwin, for instance, to adopt such an hypothesis, or which at least prevented him from rejecting it,—a very brief answer can be given. There are a small number of observations made upon man and the higher animals which seem to prove that injuries or mutilations of the body can, under certain circumstances, be transmitted to the offspring.

A cow which had accidentally lost its horn, produced a calf with an abnormal horn; a bull which had accidentally lost its tail, from that time begat tailless calves: a woman whose thumb had been crushed and malformed in youth, afterwards had a daughter with a malformed thumb, and so on.

In a great number of such cases every guarantee for the trustworthiness of the statements is entirely wanting, and, as His and still earlier Kant have already said, they are of no greater value as evidence than the merest tales. But in other cases this assertion cannot be made without further examination; and a small number of such observations can indeed claim a scientific investigation and value. I shall presently discuss this point in greater detail, but I wish now to lay stress upon the fact that, as far as direct evidence goes, we cannot bring forward any proofs in favour of the transmission of acquired characters, except these cases of mutilations. There are no observations which prove the transmission of functional hypertrophy or atrophy, and it is hardly to be expected that we shall obtain such proofs in future, for the cases are not of a kind which lend themselves to an experimental investigation. The hypothesis that acquired characters can be transmitted is therefore only directly supported by the above-mentioned instances of the transmission of mutilations. For this reason, the defenders of the Lamarckian principle, who have come forward in rather large numbers recently296, have endeavoured to show that these observations are conclusive, and therefore of the highest importance. For the same reason I believe that it is my duty, as I take the opposite view, to explain what I think of the value of these apparent proofs of transmitted mutilations.

 

It can hardly be doubted that mutilations are acquired characters: they do not arise from any tendency contained in the germ, but are merely the reaction of the body under external influences. They are, as I have recently expressed it, purely somatogenic characters297, viz. characters which emanate from the body (soma) only, as opposed to the germ-cells; they are therefore characters which do not arise from the germ itself.

If mutilations must necessarily be transmitted, or even if they might occasionally be transmitted, a powerful support would be given to the Lamarckian principle, and the transmission of functional hypertrophy or atrophy would thus become highly probable. For this reason it is absolutely necessary that we should try to come to a definite conclusion as to whether mutilations can or cannot be transmitted.

We will now consider in greater detail the facts which have hitherto been brought forward upon this point. It is not my purpose to discuss every single case which has been mentioned anywhere or by anybody; such a discussion would hardly lead to any result. I propose to select a small number of such instances, in order to show why they cannot be maintained as proofs. I shall chiefly deal with cases which have been brought forward as especially strong proofs by my opponents, and which have been carefully and completely examined. I shall attempt to show that these are not conclusive and that they must be explained in an entirely different manner. The insufficiency of the proof does not always depend upon the same circumstances, and, according to the latter, we may distinguish different classes of cases.

First of all we may briefly mention those instances in which the necessary precautions have not been taken before drawing conclusions.

To this class belong the tailless cats which were shown at last year’s (1887) Meeting of the Association of German Naturalists, at Wiesbaden. These cats had inherited their taillessness, or rather their rudimentary tails, from the mother cat, which ‘was said’ to have lost her tail by the wheel of a cart having passed over it. Not only did the owner of the cats, Dr. Zacharias, consider them as a proof of the transmission of mutilations, but in a recently-published work, entitled ‘On the Origin of Species, based upon the Transmission of acquired characters’ (‘Ueber die Entstehung der Arten auf Grundlage des Vererbens erworbener Eigenschaften’), the author, Prof. Eimer, speaks of these cats in the preface as a ‘valuable’ instance of the transmission of mutilations: these examples therefore form part of the foundation upon which the author builds up his theoretical views.

Certainly, the want of tails in young cats, of which the mother had lost its tail by an accident, would have been well worth consideration, but unfortunately there is no trustworthy record as to how the mother cat became tailless. Without absolute certainty upon this point the evidence becomes utterly worthless; and Dr. Zacharias has acted very wisely in afterwards admitting that this is the case, for inherent taillessness has been known in cats for a long time. The tailless race of the Isle of Man is mentioned in the first edition of ‘The Origin of Species’; of course I am referring to Darwin’s work, and not to the above-mentioned book of the same name, by Prof. Eimer. As to the first origin of the tailless Manx breed we know no more than about the origin of that remarkable race of cats with supernumerary toes, which E. B. Poulton has recently described from Oxford, and has traced through several generations298. These are innate monstrosities which have arisen from unknown changes in the germ. Similar monstrosities have been known for a long time, and no one has ever doubted that they can be transmitted.

It would be equally justifiable to derive the cats with extra toes from an ancestor of which the toes had been trodden upon, as to derive the tailless cats of the Isle of Man from an ancestor of which the tail had been cut off by a cart passing over it, and thus to regard the existence of the race as a proof of the transmission of mutilations.

But even if it were certain that the tail of the mother cat had been mutilated, such a fact would not necessarily prove that the rudimentary tails of the offspring were due to transmission from the mother: they might have been transmitted from the unknown father. This is probably not the case with Dr. Zacharias’ cat, for tailless kittens occurred in several families produced by the same mother; but in other cases the possibility of the possession of innate taillessness by the father must be taken into account. The following case is, in this respect, very instructive.

Last summer, my friend, Prof. Schottelius, of Freiburg, brought me a kitten with an innate rudimentary tail, which he had accidentally discovered as one of a family of kittens at Waldkirch, a small town in the southern part of the Black Forest. The mother of the kitten possessed a perfectly normal tail; the father could not be identified.

A closer investigation resulted in the following rather unexpected discovery. For some years past, tailless kittens have frequently appeared in the families of many different mother cats at Waldkirch, and this fact is explained in the following manner. A clergyman, who lived for some time at Waldkirch, had married an English lady who possessed a tailless male Manx cat. The probability that all the tailless cats in Waldkirch are more or less distant descendants of that male cat almost amounts to certainty. Since a male Manx cat has reached the Black Forest, it might equally well arrive at some other place.

But we will now leave observations such as these, which do not prove the transmission of a mutilation, because the mutilation itself has not been established; and we will turn to more serious ‘proofs.’

Let us still consider the tails of domesticated animals. In these animals a spontaneous and considerable reduction of the tail occurs not uncommonly, and since the habit of cutting off part of the tail of young animals prevails in many countries, the coincidence has been explained as a causal relation, and the question has been raised whether the disposition towards the spontaneous appearance of rudimentary tails has not arisen in consequence of the artificial mutilation practised through many generations. This supposition appears very plausible at first sight, but the keen scientific criticism of Döderlein, Richter, and Bonnet, together with careful anatomical investigations, have shown that, at least in the cases which were carefully examined, such a causal connection did not exist. It has been shown that the spontaneous rudimentary tails which occasionally appear in cats and dogs have an entirely different origin from the transmission of artificial mutilation. They depend upon an innate peculiarity of the germ, a peculiarity which is easily and strongly transmitted. They are monstrosities, like the sixth finger or toe, or, rather, like the rudimentary fingers and toes, which also occasionally appear. Bonnet299 has shown that the rudimentary tails of dogs depend upon the absence of several vertebrae, together with an abnormal ossification, and sometimes also with a premature coalescence, of the vertebrae of the tail.

Bonnet states that in the two first cases examined by him the reduction occurred at the distal end of the vertebral column in the tail, the more or less malformed vertebrae being anchylosed. A membranous appendage extended beyond the end of the reduced caudal vertebrae, as the so-called ‘soft tail.’ These characters were shown to have been inherited from the mother and to have undergone progressive development as regards the number of missing vertebrae and the proportion of individuals with rudimentary tails.

In a third instance Bonnet found that four to seven of the normal caudal vertebrae were absent, and that the column in the region of the tail was characterised by a tendency towards premature anchylosis along its whole length and not merely in its distal portion. Furthermore the last three to four vertebrae were distorted and were either placed transversely to the long axis of the tail, or were so greatly curved that the tip of the tail was directed forwards.

It is obvious that these changes are not such as we should expect as a result of the transmission of the mutilation of the tail which is so commonly practised. If the artificial injury were transmitted we should not expect that a variable number of the mesial vertebrae would be absent, but rather those of the tip. There would be no reason why the existing vertebrae should be degenerate as in the majority of the caudal vertebrae of the dogs examined by Bonnet.

 

Entirely similar phenomena have been observed by Döderlein in the tailless cats which not infrequently occur in Japan. In these cats the rudimentary vertebrae of the tail were reduced to a short, thin, inflexible spiral, which formed a knot densely covered with hair on the posterior part of the animal.

Such a reduction of the tail occurs quite independently of artificial injury, in individuals of which the parents were not injured: it is even found in races, such as the dachshund, which, as far as we know, have never been habitually mutilated.

But the fact is rendered especially interesting because the reduction of the vertebral column in the region of the tail takes place in very various degrees. Sometimes only four vertebrae are absent, sometimes as many as ten. The degree of abnormality in shape and the degree of coalescence between the vertebrae also differ greatly. Hence Bonnet rightly concludes that a slow and gradual process of reduction is going on in these animals, a process which tends, as it were, to shorten the tail. I intentionally say ‘as it were,’ for of course the statement must not be taken literally, and we must not conclude that the process of reduction is a consequence of some hypothetical developmental force seated in the organism, of which the purpose is to remove the tail. On the contrary, this instance shows very clearly that the appearance of a development guided in a certain direction may be produced without the existence of any motive developmental force.

The disposition of the tail to become rudimentary, in cats and dogs, may be explained in the simplest way, by the process which I have formerly called panmixia. The tail is now of hardly any use to these animals; and neither dog nor cat would perish because they possessed only an incomplete tail. Hence natural selection does not now exercise any influence over these parts, and an occasional reduction is no longer eliminated by the early destruction of its possessor: therefore such reduction may be transmitted to the offspring.

The race of tailless foxes which, according to Settegast, existed during the present century on the hunting-grounds of Prince Wilhelm zu Solms-Braunfels, very soon disappeared; while cats and dogs with rudimentary tails have been preserved in many cases. Such results are to be expected, because in these domesticated animals the absence of the tail did not cause any inferiority in the struggle for existence.

But these facts appear to me to be remarkable in another direction. I previously mentioned the tailless race of Manx cats. Tradition does not tell us how it happened that the descendants of the first tailless cat in the Isle of Man were able to increase and spread in such a manner as to form the dominant race in the island. But we can easily imagine how it happened, when we learn that tailless cats are especially prized300 in Japan, because people think that they are better mousers. Every one in Japan wishes to possess a tailless cat, and people even cut off the tails of normal cats when they cannot obtain those with congenital rudimentary tails, because they believe that cats become better mousers in consequence of taillessness. In Waldkirch the same account of the superiority of tailless cats is curiously enough also found. We thus see how a slight but striking variation may at once cause an energetic process of artificial selection, which helps this variation to predominance: a hint for us to be careful in passing judgment upon sexual selection, for the latter also works upon such functionally indifferent but striking variations. In the case of the cats, man has favoured a particular variation, because the novelty rather than the beauty of the character surprised and attracted him. He has attached an imaginary value to the new character, and by artificial selection has helped it to predominate over the normal form. I see no reason why the same process should not take place in animals by the operation of sexual selection.

But now, after this little digression, let us return to the transmission of mutilations.

We have seen that the rudimentary tails of cats and dogs, as far as they can be submitted to scientific investigation, do not depend upon the transmission of artificial mutilation, but upon the spontaneous appearance of degeneration in the vertebral column of the tail. The opinion may, however, be still held that the customary artificial mutilation of the tail, in many races of dogs and cats, has at least produced a number of rudimentary tails, although, perhaps, not all of them. It might be maintained that the fact of the spontaneous appearance of rudimentary tails does not disprove the supposition that the character may also depend upon the transmission of artificial mutilation.

Obviously, such a question can only be decided by experiment: not, of course, experiments upon dogs and cats, as Bonnet rightly remarks, but experiments upon animals the tails of which are not already in a process of reduction. Bonnet proposes that the question should be investigated in white rats or mice, in which the length of the tail is very uniform, and the occurrence of rudimentary tails is unknown.

Before this suggestion was made, I had already attacked the problem experimentally. Such a course might, perhaps, have been more natural to those who maintain the transmission of mutilations, to which I am opposed. Although I undertook the experiments expecting to obtain purely negative results, I thought that the latter would not be entirely valueless; and since the numerous supporters of the transmission of acquired characters do not seem to be willing to test their opinion experimentally, I have undertaken the not very large amount of trouble which is necessary in order to conduct such an experimental test.

The experiments were conducted upon white mice, and were begun in October of last year (1887), with seven females and five males. On October 17 all their tails were cut off, and on November 16 the two first families were born. Inasmuch as the period of pregnancy is only 22-24 days, these first offspring began to develope at a time when both parents were without tails. These two families were together eighteen in number, and every individual possessed a perfectly normal tail, with a length of 11-12 mm. These young mice, like all those born at later periods, were removed from the cage, and either killed and preserved, or made use of for the continuance of the breeding experiments. In the first cage, containing the twelve mice of the first generation, 333 young were born in fourteen months, viz. until January 16, 1889, and no one of these had a rudimentary tail or even a tail but slightly shorter than that of the offspring of unmutilated parents.

It might be urged that the effects of mutilation do not exercise any influence until after several generations. I therefore removed fifteen young, born on December 2, 1887, to a second cage, just after they were able to see, and were covered with hair; their tails were cut off. These mice produced 237 young from December 2, 1887 to January 16, 1889, every one of which possessed a normal tail.

In the same manner fourteen of the offspring of this second generation were put in cage No. 3 on May 1, 1888, and their tails were also cut off. Among their young, 152 in number, which had been produced by January 16, there was not a single one with an abnormal tail. Precisely the same result occurred in the fourth generation, which were bred in a fourth cage and treated in exactly the same manner. This generation produced 138 young with normal tails from April 23 to January 16.

The experiment was not concluded with the fourth generation; thirteen mice of the fifth generation were again isolated and their tails were amputated; by January 16, 1889 they had produced 41 young.

Thus 901 young were produced by five generations of artificially mutilated parents, and yet there was not a single example of a rudimentary tail or of any other abnormity in this organ. Exact measurement proved that there was not even a slight diminution in length. The tail of a newly-born mouse varies from 10.5 to 12 mm. in length, and not one of the offspring possessed a tail shorter than 10.5 mm. Furthermore there was no difference in this respect between the young of the earlier and later generations.

What do these experiments prove? Do they disprove once for all the opinion that mutilations cannot be transmitted? Certainly not, when taken alone. If this conclusion were drawn from these experiments alone and without considering other facts, it might be rightly objected that the number of generations had been far too small. It might be urged that it was probable that the hereditary effects of mutilation would only appear after a greater number of generations had elapsed. They might not appear by the fifth generation, but perhaps by the sixth, tenth, twentieth, or hundredth generation.

We cannot say much against this objection, for there are actual phenomena of variation which must depend upon such a gradual and at first imperceptible change in the germ-plasm, a change which does not become visible in the descendants until after the lapse of generations. The wild pansy does not change at once when planted in garden soil: at first it remains apparently unchanged, but sooner or later in the course of generations variations, chiefly in the colour and size of the flowers, begin to appear: these are propagated by seed and are therefore the consequence of variations in the germ. The fact that such variations never occur in the first generation proves that they must be prepared for by a gradual transformation of the germ-plasm.

It is therefore possible to imagine that the modifying effects of external influences upon the germ-plasm may be gradual and may increase in the course of generations, so that visible changes in the body (soma) are not produced until the effects have reached a certain intensity.

Thus no conclusive theoretical objections can be brought forward against the supposition that the hereditary transmission of mutilations requires (e. g.) 1000 generations before it can become visible. We cannot estimate a priori the strength of the influences which are capable of changing the germ-plasm, and experience alone can teach us the number of generations through which they must act before visible effects are produced.

If therefore mutilations really act upon the germ-plasm as the causes of variation, the possibility or even probability of the ultimate appearance of hereditary effects could not be denied.

Hence the experiments on mice, when taken alone, do not constitute a complete disproof of such a supposition: they would have to be continued to infinity before we could maintain with certainty that hereditary transmission cannot take place. But it must be remembered that all the so-called proofs which have hitherto been brought forward in favour of the transmission of mutilations assert the transmission of a single mutilation which at once became visible in the following generation. Furthermore the mutilation was only inflicted upon one of the parents, not upon both, as in my experiments with mice. Hence, contrasted with these experiments, all such ‘proofs’ collapse; they must all depend upon error.

It is for this reason important to consider those cases of habitual mutilation which have been continually repeated for numerous generations of men, and have not produced any hereditary consequences. With regard to the habitually amputated tails of cats and dogs I have already shown that there is only an apparently hereditary effect. Furthermore, the mutilations of certain parts of the human body, as practised by different nations from times immemorial, have, in not a single instance, led to the malformation or reduction of the parts in question. Such hereditary effects have been produced neither by circumcision301, nor the removal of the front teeth, nor the boring of holes in the lips or nose, nor the extraordinary artificial crushing and crippling of the feet of Chinese women. No child among any of the nations referred to possesses the slightest trace of these mutilations when born: they have to be acquired anew in every generation.

293It is true that he based his opinions upon entirely erroneous theories as to the constancy of species. Compare Brock, ‘Einige ältere Autoren über die Vererbung erworbener Eigenschaften’ in ‘Biolog. Centralblatt,’ Bd. VIII, p. 491 (1888): see also Hugo Spitzer, ‘Beiträge zur Descendenz-theorie und zur Methodologie der Naturwissenschaft,’ Leipzig, 1886, pp. 515 et seq.
294W. His, ‘Unsere Körperform,’ Leipzig, 1875.
295See in the present volume.
296[One of the most remarkable forms of this revival of Lamarckism is the establishment in America of a ‘Neo-Lamarckian School,’ which includes among its members many of the most distinguished American biologists. One of the arguments upon which the founders of the school have chiefly relied is derived from the comparative morphology of mammalian teeth. The evolution of the various types are believed to be due to modifications in shape, produced by the action of mechanical forces (pressure and friction) during the life of the individual. The accumulation of such modifications by means of heredity explains the forms of existing teeth. It may be reasonably objected that the most elementary facts concerning the development of teeth prove that their shapes cannot be altered during the lifetime of the individual, except by being worn away. The shape is predetermined before the tooth has cut the gum. Hence the Neo-Lamarckian School assumes, not the transmission of acquired characters, but the transmission of characters which the parent is unable to acquire!—E. B. P.]
297See p. of the preceding Essay (VII).
298[See ‘Nature,’ vol. xxix. p. 20, and vol. xxxv. p. 38. In the latter article nine generations are recorded, and in both articles figures of the normal and abnormal feet are given. Additional generations and many more families have been since observed, and an account of these observations will shortly be published in the same paper. The breed originally came from Bristol. In the observations recorded, the abnormality of the offspring is an indication of the hereditary strength of the female parents, while the degree of normality is a similar test of heredity through the male parents; for the female parents were always abnormal, the male parents always normal. The most abnormal kitten observed possessed seven toes on each forefoot, seven toes on the right hind foot (three more than the normal number), and six on the left hind foot. Kittens with seven toes on the forefeet and six on the hind were comparatively common, and all intermediate conditions between this and the normal were of frequent occurrence. Cats with extra toes are, I think, not uncommon in most countries, and the fact that the peculiarity is transmitted is also well known. The object of the investigation alluded to was to observe the transmission systematically through many generations.—E. B. P.]
299Bonnet, ‘Die stummelschwänzigen Hunde im Hinblick auf die Vererbung erworbener Eigenschaften,’ Anat. Anzeiger, Bd. III, 1888, p. 584; see also ‘Beiträge zur patholog. Anatomie und allgem. Pathologie’ by Ziegler and Nauwerck, Bd. IV, 1888.
300See the interesting remarks by Döderlein on this point, which Dr. Ischikawa of Japan tells me are quite correct. Döderlein, ‘Ueber schwanzlose Katzen,’ Zool. Anzeiger, vol. x. Nov. 1887, No. 265.
301It is certainly true that among nations which practise circumcision as a ritual, children are sometimes born with a rudimentary prepuce, but this does not occur more frequently than in other nations in which circumcision is not performed. Rather extensive statistical investigations have led to this result.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33 
Рейтинг@Mail.ru