bannerbannerbanner
полная версияEssays Upon Heredity and Kindred Biological Problems

Weismann August
Essays Upon Heredity and Kindred Biological Problems

An author must have been to some extent misled by preconceived ideas when he is unable to see that the manner in which the two kinds of eggs are respectively formed, directly excludes the possibility of the origin of sexual eggs from the effects of deficient or poor nutrition. The resting eggs, which require fertilization, are always larger, and require for their formation far more nutritive material, than the parthenogenetic summer-eggs. In Moina, for instance, forty large food-cells are necessary for the formation of a resting egg, while a summer-egg only requires three. And Düsing is aware of these facts, and quotes them. How can the formation of resting eggs depend upon the effects of poor nutrition when food is most abundant at the very time of their formation? In all those species which inhabit lakes, sexual reproduction occurs towards the autumn, and in such cases the resting eggs are true winter-eggs, destined to preserve the species during the winter. But at no time of the year is the food of the Daphnidae so abundant as in September and October, and frequently even until late in November (in South Germany). At this period of the year, the water is filled with flakes of animal and vegetable matter in a state of partial decomposition, thus affording abundant food for many species. It also swarms with a large number of species of Crustacea, Radiolaria, and Infusoria; and thus such Daphnids as the Polyphemidae are also well provided for. Hence there is no deficiency in the supply of food. Any one who has used a fine net in our fresh waters at this time of the year must have been at first astonished at the enormous abundance of the lower forms of animal life; and he must have been much more astonished if he has been able to compare such results with the scanty population of the same localities in spring. But it is during the spring and summer that these very Daphnidae reproduce themselves parthenogenetically. I am far from believing that my experiments on Daphnidae are exhaustive and final, and I have stated this in my published writings on the subject; but it seems to me that I have established the fact that direct influences, whether of food or of temperature, acting upon single individuals, do not determine the kind of eggs which are to be produced; but that such a decisive influence is to be found in the indirect conditions of life, and especially in the average frequency of the recurrence of adverse circumstances which kill whole colonies at once, such as the winter cold, or the drying-up of small ponds in summer. It is unnecessary for me to controvert Düsing in detail, as I have already taken this course in the case of Herbert Spencer170, who had also formed the hypothesis that diminished nutrition causes sexual reproduction.

One of my observations seems, indeed, to support such a view, but only when it is considered as an isolated example. I refer to the behaviour of the genus Moina. Females of this genus which possess sexual eggs in their ovaries, and which would have continued to produce such eggs if males had been present, enter in the absence of the latter upon the formation of parthenogenetic summer-eggs, that is, if the sexual eggs have not all been extruded, but have been re-absorbed in the ovary. At first sight, indeed, such a result appears to indicate that the increase in nutrition, produced by the breaking-up of the large winter-egg in the ovary, determines the formation of parthenogenetic eggs. This apparent conclusion seems to be further confirmed by the following fact. The transition from sexual to parthenogenetic reproduction only occurs in one species of Moina (M. rectirostris), but in this species it occurs always and without exception, while in the other species which I have investigated (M. paradoxa), winter-eggs, when once formed, are always laid, and such females can never produce summer-eggs. But in spite of this fact, Düsing is mistaken when he explains the continuous formation of sexual eggs in the latter species as due to the absence of any great increase in the amount of nutrition, such as would have followed if the egg had broken up in the ovary. In many other Daphnidae which have come under my notice, the females frequently enter again upon the formation of parthenogenetic summer-eggs, after having laid fertilized resting eggs, upon one or more occasions. This is the case, for instance, in all the species of Daphnia with which I am acquainted, and such a fact at once proves that the abnormal increase in nutrition produced by the absorption of winter-eggs cannot be the cause of the succeeding parthenogenesis. It also supports the proof that a high or low nutritive condition of the whole animal can have nothing to do with the kind of eggs which are produced, for in the above-quoted instance, the nutrition has remained the same throughout, or at all events has not been increased. It is erroneous to always look for the explanation of the mode of egg-formation in the direct action of external causes. Of course there must be direct causes which determine that one germ shall become a winter-egg, and another a summer-egg; but such causes do not lie outside the animal, and have nothing to do with the nutritive condition of the ovary: they are to be found in those conditions which we are not at present able to analyze further, and which we must, in the meantime, call the specific constitution of the species. In the young males of Daphnidae the testes have precisely the same appearance as the ovaries of the young females171, but the former will, nevertheless, produce sperm-cells and not ova. In such cases the sex of the young individual can always be identified by the form of the first antenna and of the first thoracic appendage, both of which are always clawed in the male. But who can point to the direct causes which determine that the sexual cells shall become sperm-cells in this case, and not egg-cells? Does the determining cause depend on the conditions of nutrition? Or, again, in the females, can the state of nutrition determine that the third out of a group of four germ-cells shall become an egg-cell, and that the others shall break up to serve as its food?

It is, I think, clear that these are obvious instances of the general conclusion that the direct causes determining the direction of development in each case are not to be looked for in external conditions, but in the constitution of the organs concerned.

We arrive at a like conclusion when we consider the quality of the eggs which are produced. The constitution of one species of Moina contains the cause which determines that each individual shall produce winter-eggs only, or summer-eggs only; while in another species the transition from the formation of sexual eggs to the formation of summer-eggs can take place, but only when the winter-egg remains unfertilized. The latter case appears to me to be notably a special adaptation, in this and other species, to the deficiency of males, which is apt to occur. At all events, it is obvious that it is an advantage that an unfertilized sexual egg shall not be lost to the organism. The re-absorption of the winter-egg is an arrangement which, without being the cause, is favourable to the production of summer-eggs.

This subject is by no means a simple one, as is proved by the behaviour of the small group of Daphnidae. Thus in some species, the winter-eggs are produced by purely sexual females, which never enter upon parthenogenesis; in others, the sexual females may take the latter course, but only when males are absent; in others, again, they regularly enter upon parthenogenesis. In my work on Daphnidae, I have attempted to show that their behaviour in this respect is associated with the various external conditions under which the different species live; and also that the ultimate occurrence of the sexual period, and finally the whole cyclical alternation of sexual and parthenogenetic reproduction, depend upon adaptation to certain external conditions of life.

With the aid of my hypothesis that the egg-nucleus is composed of ovogenetic nucleoplasm and germ-plasm, I can now attempt to give an approximate explanation of the nature and origin of the direct causes which determine the production, at one time of parthenogenetic summer-eggs, and at another time of winter-eggs, requiring fertilization. But in such an explanation I should also wish to include a consideration of the causes which determine the formation of the nutritive cells of the egg and of the sperm-cells to which I have alluded above.

I believe that the direct cause which determines why the apparently identical cells of the young testis and ovary in the Daphnidae develope in such different directions, is to be found in the fact, that their nuclei possess different histogenetic nucleoplasms, while, if we neglect individual differences, the germ-plasm remains precisely the same. In the sperm-cells the histogenetic nucleoplasm is spermogenetic, in the egg-cells it is ovogenetic. This must be conceded if our fundamental view is correct, that the specific nature of the cell-body is determined by the nature of its nucleus.

 

Similarly, the germ-cells of female Daphnidae, which at first do not exhibit the smallest differences, must really differ in that their nuclei must contain different kinds of nucleoplasm, which are present in different proportions. Germ-cells which are to produce a finely granular, brick-red, winter yolk (Moina rectirostris) must possess an ovogenetic nucleoplasm of a somewhat different molecular structure from those germ-cells which have only to form a few large blue fat-globules, as in the summer-eggs of the same species. It is further probable that different proportions obtain between germ-plasm and ovogenetic nucleoplasm, in these two kinds of germ-cells; and it would be a very simple explanation of the otherwise obscure part played by the food-cells, if we were to suppose that they do not contain any germ-plasm at all, and on this account do not enter upon embryonic development, but are arrested after growing to a certain size. Such an explanation, however, would not by itself show why they subsequently undergo gradual solution in the surrounding fluids. But since we know that egg-cells also begin to undergo solution as soon as the parent Daphnid is poorly nourished, we can hardly help also referring the solution of the food-cells to insufficient nourishment, occurring as soon as the egg-cell, after the attainment of a certain size, exercises a superior power of assimilation. But hitherto we could not in any way understand why the third out of a group of germ-cells should always gain this superior power and become an egg-cell. If it could be shown that its position is more highly favoured in respect of nutrition, we could understand why it outstrips the other three in development, and thus prevents them from further growth. But nothing of the kind can be shown to occur with any degree of probability, as I have previously mentioned in my works on the subject. At that time, having no better explanation, I adopted the view in question, although only as a provisional interpretation. It was not possible for me to seek in the substance of those four apparently identical cells for the cause of their different development; but now I am justified in offering the supposition that during the division of a primitive germ-cell into two, and afterwards into four germ-cells, an unequal division of the nucleoplasms takes place, in that one of the four cells receives germ-plasm as well as ovogenetic nucleoplasm, while the other three receive the latter alone. Similarly, the fact that the second cell of the group may occasionally become an egg is also intelligible, although this fact remained quite inexplicable by my former interpretation. The fact that true egg-cells, or even the whole ovary with all its germ-cells, may break up and become absorbed when the animal has been starved for a certain period of time, seems to me to be no objection to our present view, any more than the fact that an Infusorian may die from starvation would be an objection to the supposition of the immortality of unicellular organisms. The growth of an organism is not only arrested by its constitution, but also by absolute want of food; but it would be very foolish to explain the differences in size of the various species of animals as results of the different conditions of nutrition to which they were subject. Just as a sparrow, however highly nourished, could never attain the size or form of an eagle, so a germ-cell destined to become a summer-egg could never attain the size, form, or colour of a winter-egg. It is by internal constitutional causes that the course of development is determined in both these cases; and in the latter, the cause can hardly be anything more than the different constitution of the nucleoplasms.

All these considerations depend upon the supposition that the egg-nucleus contains two kinds of idioplasm, viz. germ-plasm and ovogenetic nucleoplasm. I have not hitherto brought forward any direct evidence in favour of this assumption, but I believe that such proofs can be obtained.

It is well known that there are certain eggs in which the polar bodies are not expelled until after the entrance of spermatozoa. Brooks172 has already made use of this fact as evidence against Minot’s and Balfour’s theory; for he quite rightly concludes that if the polar bodies really possess the significance of male cells, we cannot understand why such eggs are unable to develope without fertilization, when they still possess the male half of the nucleus necessary for development. But such eggs (e.g. that of the oyster) do not develope, but always die if they remain unfertilized.

This argument can only be met by a new hypothesis, the construction of which I must leave to the defenders of the above-mentioned theory. But the observation in question seems to me to furnish at the same time a proof of the co-existence of two different nucleoplasms in the egg-nucleus. If the nucleoplasm of the polar bodies was also germ-plasm, we could not understand why such eggs are unable to develope parthenogenetically, for at least as much germ-plasm is contained in the unfertilized egg as would have been present after fertilization.

The only objection which can be raised against this conclusion depends upon the supposition that the nucleoplasm of the sperm-cell is qualitatively different from that of the egg-cell. I have already dealt with this view, but I should wish to refer to it again rather more in detail. Some years ago I expressed the opinion173 that the physiological values of the sperm-cell and of the egg-cell must be identical; that they stand in the ratio of 1 : 1. But Valaoritis174 has brought forward the objection that if we consider the function of a cell as the measure of its physiological value, it is only necessary to point to the respective functions of ovum and spermatozoon in order to show that their physiological values must be different. ‘The egg-cell alone, by passing more or less completely through the phyletic stages of the female parent, developes into a similar organism; and although the presence of the spermatozoon is in most cases required in order to render possible such a result, the cases of parthenogenesis prove nevertheless that the egg can do without this stimulus.’ This objection appeared to be fully justified as long as fertilization was looked upon as the ‘vitalization of the germ,’ and so long as the sperm-cell was considered as merely ‘the spark that kindles the gunpowder,’ and further so long as the germ-substance was believed to be contained in the cell-body. But now we can hardly give to the body of the egg-cell a higher significance than that of the common nutritive soil of the two nuclei which conjugate in fertilization. But these two nuclei ‘are not different in nature,’ as Strasburger says, and as I fully believe. They cannot differ in kind, for they both consist of germ-plasm belonging to the same species of animal or plant; and there cannot be any deeper contrast between them such as would correspond to the differences between mature individuals. They cannot, from their essential nature, exercise any special attraction upon each other, and when we see that sperm-cell and egg-cell do nevertheless attract each other, as has been shown in both plants and animals, such a property must have been secondarily acquired, and has no other significance than to favour the union of sexual cells—an arrangement which may be compared to the vibrating flagellum of the spermatozoon or the micropyle of the egg, but which is not fundamental, and is not based upon the molecular structure of the germ-plasm. In lower plants, Pfeffer has proved that certain chemical stimuli emanate from the egg and attract the spermatozoid; and according to Strasburger, the synergidae in the upper part of the embryo-sac of Phanerogams secrete a substance which is capable of directing the growth of the pollen-tube towards the egg-cell. In animals it is only known as yet that spermatozoa and ova do attract each other, so that the former find the latter and bore their way through its membranes. It has also been shown that the substance of the egg-body moves towards the penetrating spermatozoon (‘cones d’exsudation’ in Asteridae: Fol); and that it sometimes enters upon convulsive movements (Petromyzon). Here therefore a mutual stimulation and attraction must exist; and perhaps we must also assume that there is an attraction between the two conjugating nuclei, for we cannot readily understand how the cytoplasm alone could direct the one to the other, as Strasburger supposes. According to Strasburger’s hypothesis, we must suppose that part of the specific cytoplasm of the sperm-cell continues to surround the nucleus after it has penetrated into the body of the egg. But however this may be, the assumed attraction between the conjugating nuclei certainly cannot depend upon the molecular structure of their germ-plasm, which is the same in both, but it must be due to some accessory circumstance. If it were possible to introduce the female pronucleus of an egg into another egg of the same species, immediately after the transformation of the nucleus of the latter into the female pronucleus, it is very probable that the two nuclei would conjugate just as if a fertilizing sperm-nucleus had penetrated. If this were so, the direct proof that egg-nucleus and sperm-nucleus are identical would be furnished. Unfortunately the practical difficulties are so great that it is hardly possible that the experiment can ever be made; but such want of experimental proof is partially compensated for by the fact, ascertained by Berthold, that in certain Algae (Ectocarpus and Scytosiphon) there is not only a female, but also a male parthenogenesis; for he shows that in these species the male germ-cells may sometimes develope into plants, which however are very weakly175. Furthermore the process of conjugation may be considered as a proof that this view as to the secondary importance of sexual differentiation is the true one. At the present time there can hardly be any hesitation in accepting the view that conjugation is the sexual reproduction of unicellular organisms. In these the two conjugating cells are almost always identical in appearance, and there is no evidence in favour of the assumption that they are not also identical in molecular structure, at least so far as one individual of the same species may be identical with another. But there are also forms in which the conjugating cells are distinctly differentiated into male and female, and these are connected with the former by a gradual transition: thus in Pandorina, a genus of Volvocineae, we are unable to make out any differences between the conjugating cells, while large egg-cells and minute sperm-cells exist in the closely allied Volvox. If we must suppose that the conjugation of two entirely identical Infusoria has the same physiological effect as the union of two sexual cells in higher animals and plants, we cannot escape the conclusion that the process is essentially the same throughout: and that therefore the differences, which are perhaps already indicated in Pandorina and are very distinct in Volvox and in all higher organisms, have nothing to do with the nature of the process, but are of quite secondary importance. If we further take into account the extremely different constitution of the two kinds of sexual cells in size, appearance, membranes, motile power, and finally in number, no doubt remains that these differences are only adaptations which secure the meeting of the two kinds of conjugating cells: that in each species they are adaptations to the peculiar conditions under which fertilization takes place.

 
170Weismann, ‘Daphniden,’ Abhandlung, VII. p. 329; Herbert Spencer, ‘The Principles of Biology,’ 1864, vol. i. pp. 229, 230.
171The same fact has since been ascertained in species belonging to several groups of animal.
172Brooks, ‘The Law of Heredity.’ Baltimore, 1883, p. 73.
173‘Zeitschrift für wissenschaftliche Zoologie,’ Bd. XXXIII. p. 107. 1873.
174Valaoritis, l. c., p. 6.
175I quote from Falkenberg, in Schenk’s ‘Handbuch der Botanik,’ Bd. II. p. 219. He further states that these are the only instances hitherto known in which undoubted male cells have proved to be capable of further development when they have been unable to exercise their powers of fertilization. It must be added that the two kinds of germ-cells do not differ in appearance, but only in behaviour; the female germ-cells becoming fixed, and withdrawing one of their two flagella, while the male cells continue to swarm. But even this slight degree of differentiation requires the supposition of internal molecular differentiation.
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33 
Рейтинг@Mail.ru