Рис. 29. Изображение электрической нити накала на склере
R, состояние покоя; А, аккомодация. Во время аккомодации передняя поверхность склеры становится более выпуклой, потому что глазное яблоко удлиняется, подобно тому как выдвигается объектив фотоаппарата, когда он фокусируется на объекте вблизи. Отблеск света на радужке – просто случайное отражение света.
Однако изображения, сфотографированные с роговицы и с передней и боковой поверхностей склеры, показывают, что произошли четыре вида хорошо заметных изменений в зависимости от того, было ли зрение нормальным или же присутствовало напряжение. Во время аккомодации изображения с роговицы были меньше, чем когда глаз находился в состоянии покоя, что указывает на удлинение глазного яблока и обусловленное им увеличение кривизны роговицы. Но когда было сделано напрасное усилие увидеть объект вблизи, изображение увеличилось, что говорит о том, что роговица стала менее выпуклой, то есть возникло состояние, которое появляется, если укорачивается оптическая ось, как при гиперметропии. Когда было сделано усилие увидеть удаленный предмет, изображение стало меньше, чем при состоянии покоя, снова указывая на удлинение глазного яблока и увеличение кривизны роговицы.
Рис. 30. Изображения на боковой части склеры
R, состояние покоя; А, аккомодация. Изображение на рисунке А больше, что говорит об уплощении боковой поверхности склеры во время удлинения глазного яблока. Му, миопия. Глаз делает усилие, чтобы увидеть объект вдали, и изображение увеличивается, что указывает на то, что глазное яблоко удлинилось, вызвав тем самым уплощение боковой поверхности склеры. Ну, гиперметропия. Глаз делает усилие, чтобы увидеть на расстоянии в два дюйма. Изображение на этой фотографии – самое маленькое изображение из фотографий этой серии, что указывает на то, что глазное яблоко стало короче по сравнению с другими фотографиями, а боковая поверхность склеры стала более выпуклой. Две нижние фотографии подтверждают ранние заключения автора о том, что дальнозоркость создается тогда, когда глаз делает усилие, смотря на объект вблизи, а близорукость возникает, когда глаз старается увидеть удаленные объекты.
Рис. 31. Множественные изображения на передней поверхности хрусталика
Этот рисунок показывает одну из трудностей, которую пришлось преодолеть, фотографируя изображения, отраженные от различных участков глазного яблока. Несмотря на то что свет был отрегулирован под максимально точным углом, нить накала отразилась от боковых поверхностей глазного яблока несколько раз. Обычно изображение раздваивалось, иногда получалось тройное изображение, как показано на рисунке, а иногда их было даже четыре. Обычно требуются дни кропотливой работы, для того чтобы устранить эти отражения, и по так и не установленным мной причинам те же настройки не всегда давали одинаковые результаты. Иногда в течение нескольких дней все получалось, а потом вдруг, непонятно почему, снова возвращались множественные изображения.
Изображения, сфотографированные с передней поверхности склеры, показали такие же серии изменений, как и изображения с роговицы. Но в тех, что были получены с боковой поверхности склеры, наблюдалось абсолютно противоположное: увеличение изображения вместо его уменьшения и наоборот – различие, которого естественно было ожидать, приняв во внимание то, что, когда передняя поверхность склеры становится более выпуклой, боковые поверхности должны стать более плоскими.
Изображение, отраженное от боковой поверхности склеры при попытке сделать усилие, чтобы увидеть объект вдали, было больше того изображения, которое было получено, когда глаз находился в состоянии покоя. Это говорит о том, что эта часть склеры стала менее выпуклой, или более плоской, в связи с удлинением глазного яблока. Изображение, полученное во время нормальной аккомодации, было также больше того изображения, которое наблюдалось в состоянии покоя, что снова говорит об уплощении боковой поверхности склеры. Однако изображение, полученное во время воспроизведения глазом усилия с целью разглядеть ближний объект, было намного меньше всех остальных изображений, что указывает на то, что склера стала более выпуклой с боков, то есть это говорит о состоянии, характерном для укороченного глазного яблока, как это происходит в случае гиперметропии.
Рис. 32. Отражение электрической нити накала от радужки
Рисунок демонстрирует то, что можно получить отражение от любой отражающей поверхности глазного яблока, не получив при этом отражений от других его частей, хотя они также могут присутствовать. Это было сделано путем изменения угла, под которым был направлен свет по отношению к глазному яблоку. На рис. № 1 наблюдения за глазом во время фотографирования продемонстрировали то, что это изображение – с радужки, а не с роговицы, и это видно на рисунке (сравните с изображением с роговицы на рис. 28). На рис. № 2, где изображение перекрывается поверхностью зрачка, то, что изображение отражено от радужки, подтверждается тем, что видна только часть нити накала. Если бы отражение было от роговицы, то отражалась бы вся нить. Заметьте, что на этом рисунке нет отражения от хрусталика. Изображения на радужке не изменили своего размера или формы во время аккомодации, опять демонстрируя то, что хрусталик, поверх которого располагается радужка, не изменяет своей формы, когда глаз настраивается на зрение вблизи.
Наиболее ярко выраженные изменения были отмечены среди изображений, отраженных от передней поверхности склеры. Отражения от боковых поверхностей склеры были менее заметными: это было связано с тем, что едва ли можно было что-либо различить на фотографии белого изображения на белом фоне. Однако они были отчетливо видны наблюдавшему и более или менее – наблюдаемому, который мог их видеть в вогнутом зеркале. Изменения размера изображения на роговице были настолько незначительными, что фотографии с ними не говорили ни о чем, за исключением случая, когда изображение было крупным, – факт, объясняющий то, почему считалось, что офтальмометр с его маленьким изображением показывал, что роговица не изменяется во время аккомодации. Правда, эти изменения были очевидны для наблюдаемого и для наблюдателя во время эксперимента.
Рис. 33. Демонстрация того, что задняя поверхность хрусталика не изменяется во время аккомодации
Нить накала лампочки электрического света (L) светит в глаз исследуемой (S), и отражение на задней поверхности хрусталика может наблюдаться исследующим (О) в телескоп (Т). На расстоянии четырех дюймов от себя исследуемая держит в руках зеркало (М), на которое наклеена маленькая буква и в котором отражается таблица Снеллена, висящая сзади над ее головой на расстоянии 20 футов. С помощью ретиноскопа удалось обнаружить, что, когда она смотрит на отражение таблицы и читает ее нижнюю строку расслабленными глазами, а потом смотрит на букву на зеркале, происходит аккомодация. Изображение на хрусталике не изменяется во время изменения фокуса. Телескоп – это телескоп офтальмометра с удаленными призмами. Поскольку не идет речи о поведении задней поверхности хрусталика во время аккомодации, то это изображение не было сфотографировано.
Изображения с роговицы – один из самых простых экспериментов этой серии в плане его проведения, и его может повторить практически каждый желающий. Все, что для этого нужно иметь: лампу мощностью в 50 свечей (обычная электрическая лампочка) и вогнутое зеркало, закрепленное на штыре, который перемещается взад-вперед вдоль паза таким образом, чтобы расстояние от зеркала до глаза при желании можно было изменять. В этом эксперименте также можно использовать простое зеркало, но вогнутое – лучше, так как оно увеличивает изображение. Зеркало должно быть расположено так, чтобы изображение электрической нити накала могло отражаться от роговицы и чтобы глаз исследуемого мог видеть отражение, глядя прямо вперед. Изображение в зеркале используется в качестве точки фиксации, а расстояние, на котором фокусируется глаз, изменяется из-за изменения расстояния от зеркала до глаза. Свет может быть размещен на расстоянии одного-двух дюймов от глаза, так чтобы было не очень горячо. Чем ближе свет, тем больше будет полученное изображение, и в зависимости от расположения – вертикальное, горизонтальное или под углом – четкость отражения может изменяться. При желании для уменьшения дискомфорта, вызываемого светом, также можно использовать голубое стекло. Как показали многочисленные эксперименты, если исследуемый пользуется левым глазом, то удобнее всего для этой цели располагать источник света слева от этого глаза и по возможности под углом 45 градусов к направлению взгляда вперед. Для наибольшей точности направления света голова исследуемого должна оставаться неподвижной, но для демонстрации это не столь обязательно. Исследуемый может просто держать лампочку в руке и, таким образом, продемонстрировать, что изображение изменяется в зависимости от того, отдыхает ли глаз, совершает ли он нормальную аккомодацию на ближнее зрение, или же делает усилие, чтобы увидеть вблизи или вдаль.
В оригинальном докладе были описаны различные причины возникновения аномалий рефракции и способы их устранения.
Свидетельства описанных в предыдущих главах экспериментов, показывающих то, что хрусталик не является фактором в аккомодации, подтверждены многочисленными наблюдениями за глазами взрослых и детей, имевших либо нормальное зрение, либо аномалии рефракции или амблиопию, а также на глазах взрослых после удаления хрусталика вследствие катаракты.
Как уже отмечалось, закапыванием атропина в глаз предполагается воспрепятствовать аккомодации путем парализации мышцы, которой приписывают функцию контроля над формой хрусталика. О том, что эта процедура обладает таким действием, говорится во всех учебниках по офтальмологии[49], а сам препарат ежедневно используется при подборе очков с целью устранения предполагаемого влияния на состояние рефракции со стороны хрусталика.
Где-то в девяти случаях из десяти состояния, возникающие вследствие закапывания атропина в глаз, вписываются в теорию, на которой эта процедура основана. В десятом же случае этого не происходит, и любой офтальмолог с любым профессиональным стажем замечал несколько таких «десятых» случаев. Многие из них изложены в литературе, и многие мне довелось наблюдать самому. Согласно теории, атропин должен создавать скрытую гиперметропию в глазах либо заведомо нормальных, либо же явно гиперметропических, и, разумеется, пациент должен быть не старше того возраста, когда от хрусталика пациента ожидается то, что он еще сможет вернуть свою эластичность. Факт в том, что иногда атропинизация приводит к миопии или же гиперметропия переходит в миопию, а у людей старше семидесяти лет, когда предполагается, что хрусталик становится твердым как камень, а также в случаях, когда хрусталик затвердевает на ранней стадии катаракты, возникает и миопия, и гиперметропия. У пациентов, глаза которых заведомо нормальные, после использования атропина появляется либо гиперметропический астигматизм, либо миопический астигматизм, либо сложный миопический астигматизм, либо смешанный астигматизм[50]. В других случаях препарат не влияет на аккомодацию, то есть никак не изменяет рефракцию. Более того, когда атропин ухудшал зрение, пациенты, просто дав отдых глазам, часто становились способными читать шрифт «диамант» с расстояния шести дюймов. А ведь считается, что атропин дает отдых глазам, позволяя отдохнуть перетруженной мышце.
При лечении косоглазия и амблиопии я часто использовал атропин, закапывая его в глаз, зрение которого было лучше, на протяжении более одного года, для того чтобы пациент начал пользоваться амблиопическим глазом. И по истечении этого времени, но все еще находясь под влиянием атропина, такие глаза становились способными за несколько часов и даже быстрее читать шрифт «диамант» с расстояния шести дюймов (см. Главу XXII). Далее следуют примеры множества подобных случаев, которыми это можно проиллюстрировать.
Мальчик десяти лет имел гиперметропию в обоих глазах. В левом, или в глазу с лучшим зрением, было три диоптрии. Когда в его глаз был закапан атропин, гиперметропия усилилась до четырех с половиной диоптрий, а зрение ухудшилось до 20/200. Пациент видел нормально вдаль с помощью плюсовой линзы в четыре с половиной диоптрии, а с дополнением другой выпуклой линзы в четыре диоптрии он смог прочитать шрифт «диамант» с расстояния десяти дюймов (лучший результат). Атропин использовался в течение года, зрачок постепенно расширялся до максимума. А правый глаз тем временем лечился с помощью методов, которые будут описаны ниже. Обычно в таких случаях зрение глаза, непосредственно не находящегося на лечении, в какой-то степени улучшается вместе с другим, но здесь этого не произошло. В конце года зрение правого глаза стало нормальным, но левый оставался точно таким же, каким он был вначале, видя по-прежнему 20/200 без очков для дали, тогда как чтение без очков было невозможным, а степень гиперметропии не изменилась. Все еще находясь под действием атропина и с расширенным до максимума зрачком, этот глаз теперь лечился отдельно, и за полчаса его зрение стало нормальным как вдаль, так и вблизи. Шрифт «диамант» пациент мог читать с расстояния шести дюймов. Все это – без очков. Согласно принятым теориям, цилиарная мышца этого глаза должна была не только быть полностью парализованной, но и должна была оставаться в состоянии полной парализации в течение года. К тому же глаз не только преодолел четыре с половиной диоптрии гиперметропии, но и добавил шесть диоптрий аккомодации, осуществляя в целом десять с половиной диоптрий. Тем, кто придерживается принятых теорий, остается только объяснить, как все это может быть сопоставлено с ними.
Точно так же, если не более замечательно, было в случае с маленькой девочкой шести лет, у которой было две с половиной диоптрии гиперметропии в правом глазу, он же лучший, и шесть – в другом, с одной диоптрией астигматизма. Лучший глаз находился под воздействием атропина, с расширенным до максимума зрачком. Оба глаза мы лечили одновременно более одного года. По истечении этого времени правый глаз все еще находился под влиянием атропина, и в обоих глазах появилась способность читать шрифт «диамант» с расстояния шести дюймов. Правый глаз делал это, скорее, лучше, чем левый. Таким образом, вопреки атропину, правый глаз не только преодолел две с половиной диоптрии гиперметропии, но и добавил шесть диоптрий аккомодации, в сумме воспроизводя восемь с половиной. Для того чтобы полностью исключить возможность возникновения скрытой гиперметропии в левом глазу, – которая на начальной стадии измерялась шестью диоптриями, – теперь в этом глазу использовался атропин, а в другой глаз его закапывать перестали. Обучение глаз по-прежнему продолжалось. Под влиянием препарата наблюдалось небольшое возвращение гиперметропии, но зрение быстро вернулось в норму. И хотя атропин использовался ежедневно на протяжении более одного года, а зрачок все время был расширен до максимума и оставался таким, тем не менее в течение всего этого времени пациентка могла читать шрифт «диамант» с расстояния шести дюймов без очков. Мне сложно понять, как цилиарная мышца могла быть связана со способностью пациентов к аккомодации, после того как в каждом из случаев в течение года или дольше в каждый глаз по отдельности закапывался атропин.
Согласно существующей на сегодняшний день теории, атропин парализует цилиарную мышцу и таким образом, не позволяя хрусталику изменять кривизну, предотвращает возникновение аккомодации. Поэтому, когда после длительного использования атропина аккомодация все же наблюдается, очевидно, что это должно происходить из-за какого-то другого фактора, либо же факторов, отличных от хрусталика и цилиарной мышцы. То, что мы наблюдаем такие случаи, противоречащие общепринятым теориям, в действительности имеет колоссальную значимость: если следовать этим теориям, то прочие факты, приведенные в этой главе, являются в одинаковой степени необъяснимыми. Однако все эти факты полностью соответствуют результатам моих экспериментов на глазных мышцах животных и моим наблюдениям за поведением изображений, отраженных от различных частей глазного яблока. Они также ярко подтверждают свидетельства экспериментов с атропином, показавшие, что аккомодация не может быть полностью и безвозвратно парализована, если только не ввести атропин глубоко в глазницу, добравшись таким образом до косых мышц, реальных мышц аккомодации, тогда как, стимулируя электричеством глазное яблоко, нельзя было воспрепятствовать образованию гиперметропии без такого же приема использования атропина с целью парализации прямых мышц.
Как уже было отмечено, то, что после удаления хрусталика вследствие катаракты глаз всегда оказывается аккомодирующим так же хорошо, как он делал это прежде, – широко известный факт. Мне в моей практике тоже довелось наблюдать такие случаи. Такие пациенты не только читали шрифт «диамант» исключительно в очках для дали с расстояний тринадцати и десяти дюймов и ближе, но и один мужчина мог вообще читать его без очков. Во всех этих случаях ретиноскоп показывал, что видимое действие процесса аккомодации было реальным и происходило не за счет «интерпретации кругов рассеяния» или других механизмов, которыми обычно объясняются те явления, с объяснением которых имеются особые затруднения, а точной фокусировкой на необходимые расстояния.
Излечение пресбиопии (см. Главу ХХ) должно быть также добавлено к клиническим свидетельствам против принятой теории аккомодации. Согласно теории о том, что хрусталик является фактором в аккомодации, такие излечения должны быть абсолютно невозможными. Тот факт, что отдых глаз улучшает зрение при пресбиопии, был замечен остальными, и его соотнесли с тем, что отдохнувшая цилиарная мышца способна на короткое время влиять на затвердевший хрусталик. Но тогда как можно понять, когда это происходит на какие-то мгновения на ранних стадиях этого состояния, не поддается пониманию то, как этими средствами получают постоянные облегчения этих состояний, или то, что на хрусталики, которые, как говорится, «тверды как камень», хоть и моментальное, но было оказано какое-то воздействие.
Сила истины – в собранных в ее пользу фактах. Любая рабочая гипотеза подтверждает свою несостоятельность быть истиной, если хотя бы единственный факт не соответствует ей. Общепринятой теории аккомодации и причин аномалий рефракции еще необходимо объяснить огромное количество фактов. Более чем за тридцать лет клинического опыта я не наблюдал ни одного факта, который бы не был в соответствии с моей убежденностью в том, что хрусталик и цилиарная мышца ничего общего с аккомодацией не имеют и что изменения формы глазного яблока, от которых зависят аномалии рефракции, не постоянны. Моих клинических наблюдений достаточно для того, чтобы это продемонстрировать. Их также достаточно для того, чтобы показать, каким образом аномалии рефракции можно воспроизвести намеренно и как они могут быть вылечены временно, на несколько мгновений, или постоянно, путем непрерывного лечения.
Теория о том, что аномалии рефракции возникают в результате постоянной деформации глазного яблока, естественно, наталкивает не только на вывод о том, что аномалии рефракции – постоянные состояния, но и о том, что нормальная рефракция также непрерывна. Поскольку эта теория принята практически во всем мире за факт, то неудивительно, что нормальный глаз обычно рассматривается как совершенная машина, всегда находящаяся в хорошем рабочем состоянии. Не имеет значения, смотрит он на незнакомый или на знакомый объект, в ярком или в тусклом освещении, в приятной или в неприятной обстановке, даже в состоянии нервного напряжения или заболевает, – от нормального глаза ожидают, что он будет иметь нормальную рефракцию и нормальное зрение все время. Факты в действительности не соответствуют этой точке зрения, но они успешно объясняют противоречия с цилиарной мышцей. Но когда не срабатывает общепринятое объяснение, все без исключения факты просто игнорируются.
Однако, когда мы понимаем то, как форма глазного яблока контролируется внешними мышцами и как мгновенно оно реагирует на их действия, можно легко увидеть, что ни одно состояние рефракции, будь оно нормальным или же аномальным, не может быть постоянным. Этот вывод подтвержден при помощи ретиноскопа. Я наблюдал эти факты очень давно, еще до того как провел эксперименты, описанные в предыдущих главах, и уже тогда я давал удовлетворительное объяснение этому. В течение тридцати лет, посвященных изучению рефракции, я обнаружил мало людей, умевших поддерживать совершенное зрение более чем на несколько минут за один раз даже в самых благоприятных условиях, и я часто видел, как рефракция изменялась полдюжины раз или чаще за одну секунду, диоптрии изменялись в широком диапазоне от двадцати диоптрий миопии до нормальной рефракции.
Подобным образом, я не нашел таких глаз, которые бы имели непрерывную или неизменяющуюся аномалию рефракции. Все люди с аномалиями рефракции имеют в различные промежутки дневного и ночного времени моменты нормального зрения, когда их миопия, гиперметропия или астигматизм полностью исчезают. Форма аномалии рефракции также изменяется, миопия даже переходит в гиперметропию, а одна форма астигматизма переходит в другую.
Из двадцати тысяч школьников, обследованных в течение одного года, более половины имело нормальное зрение, которое временами переходило в совершенное, но ни один из них не имел совершенного зрения в каждом глазу в течение всего дня. Их зрение могло быть хорошим с утра и несовершенным – вечером или несовершенным – утром и совершенным – вечером. Многие дети могли читать одну проверочную таблицу Снеллена с совершенным зрением, не сумев при этом так же идеально увидеть другую. Многие также очень хорошо могли читать некоторые буквы алфавита, тогда как не могли различать другие буквы того же размера при тех же условиях. Степень их несовершенного зрения изменялась в широких пределах: от одной третьей до одной десятой и ниже. Его продолжительность также изменялась. При некоторых условиях оно могло продолжаться всего несколько минут и меньше, при других же условиях ребенок мог вообще не видеть, что написано на школьной доске, несколько дней, недель и даже дольше. Зачастую все ученики какого-либо класса в такой же степени были этому подвержены.
Подобное состояние было отмечено у младенцев. Большинство исследователей обнаружило, что младенцы – гиперметропики. Некоторые нашли младенцев миопиками. Мои личные наблюдения определили, что рефракция новорожденных постоянно изменяется. Один ребенок исследовался с помощью атропина четыре дня подряд, начиная с двух часов после его рождения. Трехпроцентный раствор атропина был закапан в оба глазика, зрачок был максимально расширен, присутствовали и другие физиологические симптомы действия атропина. Первое обследование выявило состояние смешанного астигматизма. На второй день был обнаружен сложный гиперметропический астигматизм, а на третий день – сложный миопический астигматизм. На четвертый день один глаз был нормальным, а другой показал простую миопию. Подобные изменения были замечены и во множестве других случаев.
То, что имеет место в случаях с детьми и младенцами, относится в равной степени и ко взрослым всех возрастов. Люди старше семидесяти лет страдают от потери зрения различной степени и силы, и в таких случаях ретиноскоп всегда регистрирует присутствие аномалии рефракции. Один мужчина восьмидесяти лет с нормальными глазами и обычным нормальным зрением переживал периоды несовершенного зрения, которые могли длиться от нескольких минут до получаса или же дольше. Ретиноскопия в такие моменты всегда регистрировала наличие миопии в четыре диоптрии и выше.
Во время сна рефракционное состояние глаза редко бывает нормальным, если вообще такое возможно. Люди, чья рефракция в норме во время бодрствования, воспроизводят миопию, гиперметропию и астигматизм во время сна. У людей, имеющих аномалии рефракции во время бодрствования, аномалия рефракции во время сна усугубляется. Как раз поэтому, когда утром люди просыпаются, чувствуется более сильная усталость глаз, нежели в другое время суток, или могут даже наблюдаться сильные головные боли. Когда человек находится под действием эфира или хлороформа или в бессознательном состоянии по какой-либо другой причине, аномалии рефракции также возникают или усугубляются.
Когда глаз смотрит на незнакомый объект, всегда возникает аномалия рефракции. Отсюда и пресловутая усталость, обусловленная просмотром картин и других объектов в музее. Дети с нормальными глазами, которые могут в совершенстве читать маленькие буквы высотой в четверть дюйма с расстояния десяти футов, всегда имеют проблемы с чтением незнакомых надписей на школьной доске, хотя буквы могут быть высотой в два дюйма. Незнакомая карта или любая карта оказывают такой же эффект. Я еще не видел ребенка или учителя, который смотрел бы на карту издалека, без того чтобы стать близоруким. Считалось, что готический шрифт был повинен в таком большом количестве случаев ухудшения зрения, что, в частности, это явление назвали «готическим расстройством». Но если немецкий ребенок пытался читать латинский шрифт, он тут же становился гиперметропиком. Готический шрифт или же греческие или китайские знаки будут оказывать одинаковый эффект на ребенка или на другого человека, привыкшего к латинским буквам. Кон отверг идею о том, что готическое написание было трудно читаемым.[51] Наоборот, он всегда находил «приятным, после длительного процесса чтения монотонного латинского шрифта, вернуться к нашему нежно любимому готическому». Так как готические знаки были ему более знакомы, нежели какие-либо другие, он находил их успокаивающими для глаз. «Привычка, – как он верно заметил, – имеет много общего с трудностью». Дети, которые учатся читать, писать, рисовать или шить, всегда страдают от дефектного зрения из-за не виданных ими ранее линий или объектов, с которыми они работают.
Неожиданный взгляд на яркий свет или быстрые или внезапные изменения интенсивности света, скорее всего, будут способствовать возникновению в нормальном глазу несовершенного зрения, которое в некоторых случаях будет продолжаться неделями и месяцами (см. Главу XVII).
Шум также является частой причиной дефектного зрения в нормальном глазу. Все люди видят несовершенно, когда слышат неожиданные громкие звуки. Знакомые звуки не ухудшают зрения, но незнакомые всегда этому способствуют. Сельские ребятишки из тихих школ могут страдать дефектами зрения в течение достаточно долгого времени после переезда в шумный город. В школе они не могут хорошо справляться с заданиями из-за слабого зрения. Это, конечно, явная несправедливость со стороны учителей и других людей, если они ругают, наказывают или унижают таких детей.
В условиях психического или физического дискомфорта, такого как боль, кашель, жар, дискомфорта от жары или холода, депрессии, гнева или беспокойства, всегда возникают аномалии рефракции в нормальном глазу или усиливаются, если присутствовали раньше.
Непостоянство рефракции глаза является причиной необъяснимых никак иначе происшествий. Когда на дороге людей сбивает автомобиль или трамвай, это часто происходит из-за того, что они страдали временной потерей зрения. Столкновения на железных дорогах или в море, провалы военных операций, авиационные катастрофы и так далее часто случаются из-за того, что кто-то из ответственных лиц страдал временной потерей зрения.
Та же самая причина в значительной степени объясняет и нестыковку фактов, которую замечал любой изучавший данный вопрос с использованием собранных статистических данных о возникновении аномалий рефракции. Насколько мне известно, это еще никогда не принималось во внимание никем из исследователей, занимавшихся данным вопросом. К тому же результаты любого подобного исследования должны быть жестко привязаны к тем условиям, в которых оно проходило. Можно взять лучшие глаза в мире и проверить их таким образом, что человека с таким зрением не возьмут в армию. А проверка зрения, которое изначально заведомо хуже нормального, может быть проведена таким образом, что через несколько минут проверки зрение улучшается настолько, что человек может идеально прочитать проверочную таблицу.