bannerbannerbanner
полная версияРадиус наблюдаемой Вселенной и горизонт Вселенной

Петр Путенихин
Радиус наблюдаемой Вселенной и горизонт Вселенной

Полная версия

Рассмотрим интервал времени, равный, например, 1 секунде. Мы понимаем, что если Земля находится дальше сферы Хаббла, то спустя эту секунду удалённость Земли от сверхновой увеличится больше, чем путь, пройденный фотонами. Это очевидно, поскольку скорость Земли за пределами сферы Хаббла превышает скорость света. Следовательно, фотоны явно её не догонят. Теперь рассмотрим вторую ситуацию: Земля находится очень близко от сверхновой, например, на удалении в 11 световых секунд. За первые t = 10 секунд фотоны приблизятся к Земле на 10 световых секунд, а Земля за это время, напротив, удалится от сверхновой на расстояние 10eHt световых секунд. Легко обнаружить, что эта величина лишь ненамного превышает 10 световых секунд пути фотонов, поскольку ввиду малости времени значение экспоненты мало отличается от единицы.

Таблица 1. Время T от момента вспышки до наблюдения

сверхновой, находившейся на удалении R0 от Земли



Сразу же догадываемся, что за следующие 10 секунд по этой же причине фотоны точно догонят Землю. Действительно, при малых значениях показателя, экспоненту можно заменить формулой:



Тогда удалённость Земли увеличилась на:



Получается, что фононы удалились на 10 световых секунд, а Земля – только на Ht << 1. Понятно, что в следующие 10 секунд фотоны явно её догонят, поскольку эту новую ситуацию мы можем рассматривать как исходную, но теперь уже Земля находится к звезде существенно ближе.

Таким образом, мы имеем два значения начальной удалённости: при одной из них фотоны догонят Землю, при другой – нет. Понятно, что между этим двумя значениями есть некоторое промежуточное, максимальное значение удалённости, на котором фотоны всё ещё смогут догнать Землю. Обозначим его через Rx. Тогда можно записать неравенство для первой секунды движения t = 1:



Преобразуем:



Согласно начальным условиям, за первую секунду расстояние между звездой и Землёй не должно было увеличиться. То есть, предельное значение удалённости Земли от сверхновой, при которой фотоны от её взрыва смогут догнать Землю, не должно превышать значения радиуса сферы Хаббла.

Наблюдаемый закон Хаббла

Известная, классическая диаграмма Хаббла, связывающая скорость удаления галактики с её удалённостью, является прямой линией, поскольку её уравнением является уравнение прямой: = rH0. Однако пары значений (v, r), используемые для построения диаграмм Хаббла, при использовании нашего уравнения (10.3), очевидно, приведут к несколько иному виду диаграмм. При использовании этого уравнения красное смещение или скорость наблюдаемой галактики, сверхновой, очевидно, не меняются, поскольку нигде в алгоритме их коррекция не производилась. Но изменение величины дистанций, понятно, ведёт и к изменению их функциональной связи, изменению формы диаграммы закона Хаббла.

В этой связи следует выделить три варианта диаграмм закона Хаббла: теоретический, наблюдательный и условный, для начальных удалённостей сверхновых. Диаграмма теоретического закона v = Hr по умолчанию не учитывает время в пути света от наблюдаемой галактики, поэтому изначально она строго прямолинейна. Наблюдательный закон использует в теоретическом законе Хаббла наблюдаемые значения дистанций, которые на самом деле, как мы определили, меньше теоретических. Понятно, что диаграмма Хаббла (r, v) в этом случае окажется ниже теоретической диаграммы.

Теоретическая диаграмма закона Хаббла, судя по всему, на самом деле является экстраполяцией, поскольку строится на основании начального участка, по наблюдениям в ближней области Вселенной, в которой разница между теоретической яркостью и видимой практически незаметна. Полученное в этих измерениях значение параметра Хаббла H0 подставляется в теоретический закон Хаббла. На самом деле реальное, теоретическое значение параметра Хаббла на больших удалённостях должно быть больше экстраполяционного. Указанные варианты диаграмм Хаббла представлены на рисунке 10.9.

Горизонтальная ось диаграмм – скорость v удаления некоторой сверхновой в долях от скорости света. Следовательно, графики удалённостей Rco, R и R0 – фактически являются диаграммами Хаббла, зависимостями дистанции от скорости.

Традиционная или теоретическая диаграмма Хаббла изображена графиком синего цвета, и описывается стандартным законом Хаббла: v = H0R. График показывает реальную удалённость сверхновой, имеющей соответствующую скорость. График строго линейный, что вызвано неизменностью параметра Хаббла во времени.

Однако астрономы не могут непосредственно наблюдать удалённость сверхновой, о которой можно судить по её яркости. На самом деле из-за задержки света в пути и согласно представленным выше вычислениям для удалённостей сверхновой согласно (10.3), сверхновая видна более яркой, то есть, она кажется нам более близкой. Это и приводит к изгибу фактической диаграммы Хаббла до наблюдаемой диаграммы (красный график Rco).



Рис.10.9


Жёлтый график можно назвать условной диаграммой Хаббла, составленной для начальных, исходных удалённостей наблюдаемых сверхновых, то есть, для наблюдаемой Вселенной.

Таким образом, каждому значению скорости сверхновой соответствуют три значения удалённости – теоретическая R, пропорциональная параметру Хаббла H0; наблюдаемая Rco, учитывающая задержку во времени получения фотонов вспышки сверхновой; и исходная удалённость R0. Все величины на рисунке представлены в фотонной системе отсчёта: дистанция в млрд. световых лет, время – в млрд. лет, из чего следует, что скорость света равна 1.

Зелёный график Tce – это график времени, дат взрывов сверхновых от начала расширения Вселенной, имеющих в этот момент некоторую скорость v относительно Земли. Основное назначение этого параметра – определение значений для трёх других графиков. Например, сверхновая, движущаяся со световой скоростью, в начале расширения была на удалении 5 млрд. световых лет от Земли (жёлтый график R0), взорвалась примерно через 4 млрд. лет от начала расширения пространства или примерно 10 млрд. лет назад (зелёный график). Наблюдения показывают её удалённость на 10 млрд. световых лет (красный график Rco), хотя на самом деле сверхновая сегодня находится на удалении 14 млрд. световых лет (синий график).

Рейтинг@Mail.ru