Примерно в это же время было сделано важное открытие, которое навсегда изменило работу Мерцениха. В 1960-е годы, когда Мерцених приступил к использованию микроэлектродов для изучения мозга, двое других ученых, тоже работавших в Институте Джонса Хопкинса под руководством Маунткастла, обнаружили, что у очень молодых животных мозг пластичен. Дэвид Хьюбел и Торстен Визел проводили микрокартирование зрительной зоны коры мозга с целью изучения процесса обработки визуальной информации. Они устанавливали микроэлектроды в зрительной зоне коры мозга котят и выяснили, что информация о линиях, ориентации и движениях визуально воспринимаемых объектов обрабатывается в разных частях коры. Они также открыли существование «критического периода» между третьей и восьмой неделями жизни, когда мозг новорожденных котят должен получать визуальную стимуляцию для нормального развития. В ходе одного из экспериментов Хьюбел и Визел зашили веко на одном глазу котенка на время периода раннего развития, чтобы этот глаз не получал визуальной стимуляции. Когда они освободили глаз котенка от швов, то обнаружили, что те зрительные области на карте мозга, которые обрабатывают информацию, поступающую от закрытого глаза, не получили никакого развития, в результате чего животное осталось слепым на этот глаз на всю жизнь. Стало очевидно, что есть некий критический период, когда мозг котят особенно пластичен, и его структура формируется под влиянием опыта.
Проанализировав карту мозга для слепого глаза, Хьюбел и Визел сделали еще одно неожиданное открытие, связанное с нейропластичностью. Та часть мозга, в которую не поступала информация от закрытого глаза, не бездействовала. Она начала обрабатывать визуальную информацию от открытого глаза, словно в мозгу не должны простаивать впустую никакие «корковые площади». То есть мозг опять нашел способ перестроить сам себя – что стало еще одним свидетельством его особой пластичности в критический период. За эту работу Хьюбел и Визел были удостоены Нобелевской премии. Однако, даже обнаружив существование пластичности мозга в раннем детском возрасте, исследователи не «переносили» эту пластичность на мозг взрослого человека.
Открытие критических периодов[22] стало одним из самых известных открытий второй половины двадцатого века в области биологии. Вскоре ученые доказали, что стимуляция извне необходима и для развития других систем мозга. Также стало ясно, что у каждой нейронной системы есть свой критический период, или временной интервал, в течение которого она отличается наибольшей пластичностью и восприимчивостью к факторам окружающей среды, а также демонстрирует быстрый рост. Например, сенситивный период для развития языковых навыков начинается в младенчестве и заканчивается в промежутке между восьмью годами и наступлением половой зрелости. После завершения этого критического периода способности человека к изучению языка (в том числе второго языка) становятся ограниченными. Интересно, что обработка информации, полученной при изучении родного языка (что, естественно, случается в сенситивный период) и второго языка после критического периода, происходит в разных областях мозга.
Представление о сенситивных периодах развил известный исследователь поведения животных – этолог Конрад Лоренц. Он заметил, что если в промежутке между пятнадцатью часами и тремя днями после рождения гусята в течение короткого периода времени будут общаться с человеком, то именно к нему, а не к матери они будут испытывать родственные чувства всю оставшуюся жизнь. Чтобы доказать это, он сам выращивал гусят, которые потом следовали за ним повсюду. Лоренц назвал этот процесс «импринтингом» (т. е. запечатлением. – Прим. ред.).
В действительности нечто похожее на такие критические периоды описывал и Зигмунд Фрейд. Он утверждал, что мы проходим стадии развития, представляющие собой особые периоды, в течение которых мы должны испытывать определенные переживания (получать определенный опыт), без которых не будем здоровыми людьми; по его мнению, эти периоды определяют наше развитие и формируют нас на всю оставшуюся жизнь.
Появление идеи о пластичности мозга в критический период изменило медицинскую практику. Благодаря открытию Хьюбела и Визела дети, родившиеся с катарактой, больше не были обречены на слепоту. Теперь в раннем детском возрасте, то есть в критический период, им давали направление на прохождение восстановительной хирургической операции, после которой их мозг мог получать световую информацию, необходимую для формирования важных связей. Так использование микроэлектродов доказало пластичность мозга, по крайней мере, в детские годы.
Мерцених задумался о пластичности мозга взрослого человека благодаря случаю. В 1968 году после защиты докторской диссертации он начал работать в качестве научного сотрудника у коллеги Пенфилда – Клинтона Вулси, исследователя из Мэдисона, штат Висконсин. Вулси поручил Мерцениху курировать двух нейрохирургов – Рона Пола и Герберта Гудмана. Все вместе они решили провести научное наблюдение за тем, что происходит, если перерезан один из периферических нервов кисти руки и затем начинается его регенерация.
Нервную систему принято делить на центральную нервную систему (головной мозг и спинной мозг) и периферическую. Первая выступает в роли центра оперативного управления всей системой. Вторая – периферическая – доставляет сообщения от органов чувств в спинной и головной мозг и переносит команды из головного и спинного мозга к мышцам и железам. Ученым давно известно, что периферическая нервная система пластична; если вы перерезаете, скажем, нерв кисти руки, он способен «регенерировать», т. е. «вырасти» заново.
Каждый нейрон состоит из трех частей. Прежде всего это дендриты – его многочисленные разветвленные отростки, воспринимающие сигналы от других нервных клеток. Дендриты передают эти сигналы в тело клетки. Далее следует аксон – более длинный отросток, представляющий собой живой кабель, он может иметь самую разную длину (от микроскопических аксонов в головном мозге до аксонов, идущих к ногам человека и достигающих почти 2 м в длину). Аксоны упрощенно можно сравнить с проводами, потому что они на очень большой скорости переносят электрические импульсы к дендритам соседних нейронов.
Нейрон может получать сигналы двух типов: одни его возбуждают, другие подавляют. Когда нейрон получает достаточное количество возбуждающих сигналов от других нейронов, он испускает свой собственный сигнал. При получении им подавляющих сигналов его активность подавляется, и вероятность порождения им сигнала уменьшается.
Аксоны не соприкасаются напрямую с дендритами соседних нейронов. Они разделены микроскопическим пространством, которое называют синапсом. После того как электрический сигнал попадает на конец аксона, он приводит в действие выработку в синапсе химического посредника – медиатора (или нейротрансмиттера). Химический посредник устремляется к дендриту соседнего нейрона, возбуждая его или подавляя. Когда мы говорим, что нейроны «перепрограммируют» самих себя, то имеем в виду изменения, происходящие в синапсе, которые усиливают и повышают или ослабляют и уменьшают количество связей между нейронами.
Мерцених, Пол и Гудман хотели исследовать хорошо известную, но сохраняющую свою загадочность связь между периферической и центральной нервными системами. Когда большой периферический нерв (состоящий из множества аксонов) перерезается, то иногда в процессе его регенерации происходит «перекрещивание проводов». И если аксоны заново присоединяются к аксонам «неправильного» нерва, у человека может проявиться «ложная локализация», при которой прикосновение к указательному пальцу ощущается в большом пальце. Ученые предположили, что ложная локализация возникает из-за того, что процесс регенерации «перемешивает» нервы, посылая сигнал от указательного пальца в зону мозга для большого пальца.
Ученые придерживались еще того представления, что каждый участок на поверхности тела имеет нерв, напрямую передающий сигнал в определенную точку на карте мозга, положение которой автоматически программируется при рождении. Таким образом, считалось, что ветвь нерва в большом пальце всегда передает свои сигналы непосредственно в то место на сенсорной карте мозга, которая представляет большой палец.
Итак, Мерцених и его группа, исходя из такой модели карты мозга, просто решили зафиксировать то, что происходит в мозге в процессе «перемешивания» нервов. С помощью микроэлектродов они составили карты кисти руки в мозге нескольких взрослых обезьян, перерезали периферический нерв, идущий к кисти, и сразу же сшили два конца перерезанного нерва таким образом, чтобы они находились достаточно близко друг к другу, но не соприкасались полностью. Они рассчитывали на то, что в процессе саморегенерации нерва произойдет перекрещивание его многочисленных аксональных «проводов». Через семь месяцев они провели повторное картирование. Мерцених предполагал, что они получат хаотичную карту мозга с большим количеством нарушений. Так, он ожидал, что в случае пересечения нервов большого и указательного пальца прикосновение к указательному пальцу вызовет активность в той области карты, которая соответствует большому пальцу. Но он не увидел ничего подобного. Карта была практически нормальной.
«То, что мы увидели, – говорит Мерцених, – было просто поразительно. Я не мог ничего понять». Новая карта была топографически упорядочена, словно мозг совсем не путал сигналы от перекрещенных нервов.
Это открытие изменило жизнь Мерцениха. Он понял, что не только он сам, но и большинство нейрофизиологов совершенно неправильно интерпретируют то, как мозг человека формирует свои карты-представительства тела и окружающего мира. Иначе говоря, карта мозга способна упорядочить свою структуру в ответ на поступление аномальной входной информации, то есть мозг – пластичен.
Как же это возможно? Получив результаты эксперимента, Мерцених также заметил, что формирование новых «топографических карт» происходило немного в другом месте, чем это было раньше. Мерцених решил во всем разобраться.
Он отправился в библиотеку, чтобы найти там дополнительные данные. Мерцених выяснил, что в 1912 году Грэм Браун и Чарльз Шеррингтон обнаружили, что стимуляция одной точки в двигательной области коры головного мозга может заставить животное в один момент сгибать ногу, а в другой – выпрямлять. Результаты этого эксперимента, данные о которых затерялись в массе научной литературы, позволяли предположить отсутствие однозначной связи между двигательной картой мозга и определенным движением. В 1923 году Карл Лэшли, использовавший более примитивное оборудование, чем микроэлектроды, вскрыл череп обезьяны, открыв двигательную зону коры мозга, затем простимулировал ее в определенном месте и зафиксировал возникшее в результате этого движение. Затем он зашил все обратно. Через некоторое время он повторил свой эксперимент, стимулируя мозг обезьяны в том же самом месте, и убедился в том, что вызываемые этим движения часто меняются. Знаменитый теоретик того времени из Гарвардского университета – Эдвин Г. Боринг выразил этот феномен следующей фразой: «Составленная сегодня карта завтра уже будет недействительна».
Это означало, что карты мозга носят динамический характер.
Мерцених сразу же оценил революционные последствия этих экспериментов. Он обсудил эксперимент Лэшли с Верноном Маунткастлом, у которого, по словам Мерцениха, «эксперимент Лэшли вызвал серьезное беспокойство. Маунткастл не желал верить в пластичность мозга. Он хотел, чтобы все оставалось на своих местах вечно. А Маунткастл понимал, что результаты этого эксперимента ставят под сомнение наши представления о мозге. Маунткастл считал Лэшли сумасбродом, склонным к преувеличениям».
Коллеги готовы были согласиться с результатами экспериментов Хьюбела и Визела и самим фактом существования пластичности мозга в детские годы, но они отвергали предположение Мерцениха о том, что пластичность сохраняется и тогда, когда человек вступает во взрослое состояние.
Мерцених с грустью вспоминает: «У меня были все основания для того, чтобы верить в невозможность существования пластичности у взрослых людей, но они были ниспровергнуты всего за одну неделю».
Мерцениху не оставалось ничего другого, как искать наставников среди призраков мертвых ученых, таких как Шеррингтон и Лэшли. Он написал статью об эксперименте с «перемешиванием» нервов, где несколько страниц в разделе «Комментарии» посвятил рассуждениям о том, что мозг взрослого человека обладает пластичностью – хотя само это слово он не употреблял.
Однако комментарии так никогда и не были опубликованы. Клинтон Вулси, его куратор, поставил на них большой крест, сказав, что они носят излишне гипотетический характер и что Мерцених очень сильно отступает от полученных им данных. Когда статья была опубликована, в ней не было ни малейшего упоминания о пластичности, а объяснению новой топографической организации карты мозга уделялось минимальное внимание. Мерцених не стал возражать, по крайней мере, в печати. В конце концов, он был всего лишь рядовым научным сотрудником лаборатории.
Но ситуация со статьей разозлила его, а его ум буквально кипел от разных идей. Он начал приходить к мысли о том, что, возможно, пластичность – это главное свойство мозга, которое получило развитие в ходе эволюции, чтобы дать людям конкурентное преимущество, и что это может быть настоящим «чудом».
В 1971 году Мерцених стал профессором Калифорнийского университета в Сан-Франциско и начал работать на кафедре отоларингологии и физиологии, которая занималась исследованием заболеваний уха. Теперь он был сам себе начальником и приступил к проведению серии экспериментов, которые должны были доказать существование пластичности мозга. Однако данная тема все еще вызывала множество споров, поэтому он проводил эксперименты, связанные с нейропластичностью, под видом исследований, считавшихся допустимыми. Так, в начале 1970-х годов он потратил значительное количество времени на составление карт слуховой зоны коры головного мозга различных видов животных и принял участие в создании и совершенствовании имплантата для внутреннего уха.
Улитка внутреннего уха – это своеобразный микрофон. Она расположена рядом с вестибулярным аппаратом, который управляет чувством равновесия. Когда во внешнем мире возникает звук, звуковые волны разной частоты вызывают вибрацию волосковых клеток внутри улитки, соответствующих определенной частоте. Существует три тысячи таких волосковых клеток, которые преобразуют звук в электрические сигналы, идущие по слуховому нерву к слуховой зоне коры головного мозга. Специалисты, занимающиеся микрокартированием, выяснили, что в слуховой зоне звуковые частоты наносятся на ее карту «тонотопически». Это означает, что они организованы по тому же принципу, что и пианино: низкие звуковые частоты расположены на одном конце проекционной слуховой зоны, а высокие – на другом.
Улитковый имплантат не является слуховым аппаратом. (Слуховой аппарат усиливает звук и помогает людям с частичной потерей слуха, вызванной тем, что их улитка функционирует не в полном объеме, но достаточно хорошо для того, чтобы выявлять хоть какой-то звук.) Улитковые имплантаты предназначены для тех, чья глухота связана с серьезным повреждением улитки. Такой имплантат заменяет улитку, преобразуя звуки речи во вспышки электрических импульсов, посылаемых к мозгу. Мерцених и его коллеги не надеялись полностью воспроизвести сложный естественный орган с тремя тысячами волосковых клеток, поэтому им предстояло решить вопрос о том, может ли мозг, получивший в процессе эволюции способность расшифровывать сложные сигналы, поступающие от такого большого количества волосковых клеток, расшифровать импульсы от гораздо более простого устройства. Если окажется, что он на это способен, значит, слуховая зона коры обладает пластичностью, позволяющей ей изменяться и реагировать на искусственные входные сигналы. Имплантат состоит из микрофона, электронного устройства, преобразующего звук в электрические импульсы, и электрода, который хирурги имплантируют в нервы, идущие от уха к мозгу.
В середине 1960-х годов некоторые ученые были настроены крайне враждебно в отношении самой идеи создания улиткового имплантата. Одни говорили, что осуществление такого проекта просто невозможно. Другие заявляли, что в результате использования таких имплантатов глухие люди могут быть подвергнуты риску дальнейших нарушений. Несмотря на все это, среди пациентов нашлись добровольцы, готовые проверить работу имплантатов на себе. Первоначально некоторые из них могли услышать только шум; другие улавливали всего несколько звуков, шипение и момент начала и окончания звучания.
Вклад Мерцениха в разработку улиткового имплантата заключался в том, что он использовал знания, полученные в процессе картирования слуховой зоны, для определения того, какие входные сигналы должен получать от имплантата пациент, чтобы иметь возможность расшифровать речь, и куда следует имплантировать электрод. Совместно с биоинженерами он работал над созданием прибора, который сможет передавать сложную речь по небольшому количеству каналов и при этом речь не станет менее доступной для понимания. Они разработали высокоточный, многоканальный имплантат, позволяющий глухим людям слышать, а его конструкция легла в основу одного из двух улитковых имплантатов, наиболее часто используемых в наши дни.
Естественно, больше всего Мерцениху хотелось заняться непосредственным изучением пластичности мозга. В конце концов он решил провести простой, радикальный эксперимент, в ходе которого планировалось полностью отрезать поступление сенсорной информации к карте мозга и посмотреть, какой будет реакция. Он отправился в Нэшвилл к своему другу и коллеге из Университета Вандербилта Джону Каасу, который работал со взрослыми обезьянами.
Кисть руки обезьяны так же, как у человека, имеет три главных нерва: радиальный, медиальный и локтевой. Медиальный нерв передает ощущения, главным образом, от средней части кисти, а два других – от ее обеих сторон. Мерцених перерезал медиальный нерв у одной из обезьян, чтобы посмотреть, что будет происходить с картой медиального нерва, когда будет прервано поступление всей входной информации. После этого он вернулся в Сан-Франциско и стал ждать.
Через два месяца он снова приехал в Нэшвилл. Составив карту мозга обезьяны, он, как и предполагалось, обнаружил, что при прикосновении к средней части кисти обезьяны в области карты, обслуживающей медиальный нерв, не наблюдается никакой активности. Но его поразило нечто другое.
Карта медиального нерва активировалась, когда он нажимал на внешние стороны кисти обезьяны – те области, которые посылают свои сигналы через радиальный и локтевой нервы! Карты мозга для радиального и локтевого нервов увеличились в размере почти в два раза и захватили то пространство, которое раньше было картой медиального нерва. И эти новые карты имели топографический характер.
На сей раз, публикуя результаты исследований, Мерцених и Каас назвали изменения «впечатляющими» и для их объяснения использовали слово «пластичность», хотя и поставили его в кавычки.
Эксперимент показал, что при перерезании медиального нерва другие нервы, которые по-прежнему получают входные электрические сигналы, «захватывают» пространство неиспользуемой карты для обработки поступающей к ним информации. Таким образом, снова подтвердилось, что управление картами мозга определяется конкуренцией за драгоценные ресурсы и принципом «не использовать – значит потерять».
Конкурентная природа нейропластичности оказывает влияние на всех нас. Внутри нашего мозга идет бесконечная война нервов. Если мы прекращаем тренировать наши ментальные навыки, то пространство карты мозга, предназначенной для этих навыков, переходит к тем навыкам, которые мы продолжаем использовать. Когда вы спрашиваете себя: «Как часто я должен упражняться во французском языке, играть на гитаре или заниматься математикой, чтобы делать это неизменно хорошо?», то задаете вопрос о конкурентном характере пластичности мозга. Речь идет о том, с какой регулярностью вам следует заниматься каким-либо видом деятельности, чтобы связанное с ним пространство карты мозга не досталось другому виду деятельности.
Конкурентный характер нейропластичности помогает объяснить некоторые ограничения возможностей взрослых людей. Вспомните те проблемы, которые возникают у большинства взрослых при изучении второго языка. Принято считать, что эти проблемы связаны с тем, что к моменту взросления период сенситивный для изучения языков заканчивается и наш мозг становится слишком негибким для крупномасштабного изменения своей структуры. Однако открытие конкурентного характера пластичности мозга позволяет расширить это объяснение. Возможно так. По мере взросления мы все больше используем родной язык, вследствие чего он начинает доминировать в той части карты мозга, которая связана с нашими лингвистическими способностями.
Если это действительно так, то почему же нам проще учить второй язык в молодости? Разве в это время конкуренция отсутствует? Дело в том, что если освоение двух языков происходит одновременно в критический период (т. е. в раннем детстве), то оба языка получают единую «зону опоры». По словам Мерцениха, результаты сканирования мозга показывают, что у детей, говорящих на двух языках, звуки обоих языков представлены на одной большой карте, образующей своеобразную библиотеку всех звуков.
Конкурентный характер нейропластичности, возможно, объясняет и то, почему нам так сложно порвать с плохими привычками или «отучиться» от них. Большинство из нас представляют мозг в виде хранилища, а обучение – как средство его заполнения. Пытаясь избавиться от плохой привычки, мы считаем, что можем решить этот вопрос, добавив что-то новое в это хранилище. Однако когда мы приобретаем плохую привычку, она завладевает участком карты мозга, и каждый раз, когда мы действуем в соответствии с ней, она получает все больший контроль над картой и мешает использованию данного пространства для других привычек. Именно поэтому нередко «отучиться» от дурных привычек гораздо сложнее, чем их приобрести, что говорит о важности обучения, проводимого в раннем детстве, – раньше, чем «плохие» привычки получат конкурентное преимущество.