Эта логика сопоставима с той, которую проводит В. Ф. Петренко при анализе влияния эмоций на процессы категоризации. Он рассматривает порождение значения как «последовательный переход от коннотативной нерасчлененности [сравнительно низкая дифференцированность] к предметно-категориальной организации, включающей обогащение содержанием на каждом уровне [сравнительно высокая дифференцированность]». Аффект же, рассматриваемый как «простейшая форма эмоционального проявления», обусловливает «обратный переход»: «…от более расчлененных (предметно-категориальных) форм категоризации к аффективно-ситуативным (коннотативным) формам категоризации» (Петренко, 1997, с. 192–193). Сходные представления развивались, как мы уже отмечали, и другими авторами, например, П. Жане (1929/2010) и Ж.-П. Сартром (1948/1984).
В то же время полученные нами данные позволяют сделать вывод о том, что регрессия при введении алкоголя имеет в своей основе врéменное угнетение активности нейронов более новых дифференцированных систем – элементов субъективного опыта, т. е. врéменную дедифференциацию. Иначе говоря, под дедифференциацией нами понимается обратимое[5] относительное увеличение представленности в актуализированном опыте менее дифференцированных систем[6].
Следовательно, можно полагать, что связь регрессии с сильными эмоциями обусловлена тем, что в основе как повышения интенсивности переживаемых эмоций, так и регрессии лежит единый механизм – обратимая дедифференциация.
• При алкогольной зависимости происходит увеличение числа имеющихся в памяти способов поведения, связанных с приемом алкоголя, т. е. в домене опыта, связанном с алкоголем, увеличивается дифференциация.
• В процессе формирования нового опыта происходит модификация ранее сформированных систем – аккомодационная реконсолидация.
• Введение алкоголя в процессе формирования нового опыта «блокирует» реактивацию (по белку c-Fos) нейронов систем уже приобретенного опыта; под воздействием алкоголя меняется число нейрогенетически активных нейронов, вовлеченных в процесс приобретения нового опыта.
• При научении в условиях алкогольной регрессии в меньшей степени выражено вовлечение корковых областей в формирование новых элементов опыта, а также менее выражена реорганизация, «подстройка» уже имевшегося у индивида опыта, которая обеспечивает взаимосогласование раннее образованных и вновь сформированных систем.
Если полагать, что регрессия не является «шагом назад» (см. сноску 5 и раздел 1.1) и что развитие непрерывно, неостановимо[7] (Бергсон, 1907/2001; Александров, Сергиенко, 2003; Гайденко, 2005; Valsiner, 1992), то регрессия является вариантом и, вероятно, даже условием развития[8]. Ниже мы представим доказательства в пользу этого тезиса. Начнем с «алкогольной» регрессии.
Повторные ситуации алкогольной регрессии одним из возможных результатов могут иметь формирование зависимости. В специальных экспериментах с хронически алкоголизированными животными нами было показано, что появление зависимости связано с системогенезом: формированием новых систем и, следовательно, нейронных специализаций, обеспечивающих реализацию поведения, направленного на получение алкоголя (Alexandrov et al., 2001, 2013). Таким образом, происходит увеличение числа имеющихся в памяти способов поведения в специфической ситуации и в данном, связанном с алкоголем домене[9] опыта увеличивается дифференциация.
Если предполагать, что имеет место формирование способа поведения, связанного с определенным доменом опыта, то следует ожидать, что и извлечение из памяти опыта данного поведения будет более эффективно при возникновении ситуации, имеющей отношение к достижению результатов, характерных для этого домена. О таких особенностях извлечения из памяти свидетельствует феномен научения, зависимого от состояния (state-dependent learning), который особенно отчетливо продемонстрирован для ситуаций, связанных с приемом психоактивных веществ, включая алкоголь (Азарашвили, 1978; Пузе, Штеклер, 2013). Обнаружено, в частности, что память, сформированная под действием алкоголя, может извлекаться наиболее эффективно в состоянии алкогольного опьянения (Goodwin et al., 1969; Eich, 1980; Duka et al., 2001; Weingartner, Murphy, 2014; и мн. др.). А. М. Уайт отмечает, что механизмы и условия появления данного феномена, как и вообще влияния алкоголя на формирование и воспроизведение памяти, не ясны и требуют изучения, для которого «использование животных в экспериментах остается абсолютно необходимым» (White, 2003, р. 195).
Выше мы отмечали, что начальным этапом развертывания научения является активация (экспрессия) ранних генов, за которой следует волна активации поздних, морфогенетических генов и перестройки морфологии нейронов (см.: Александров, 2004; Анохин, 1997, 2012; Александров и др., 2015). Мы определяли, каковы особенности этого этапа научения при алкогольной регрессии. Если алкоголь «блокирует» в большей степени активность нейронов относительно недавно приобретенных систем, можно предположить, что введение алкоголя при формировании нового опыта окажет влияние на процессы аккомодационной реконсолидации, т. е. на процессы модификации тех систем, которые были сформированы ранее. Эта модификация, как уже было отмечено, связана с приспособлением упомянутых систем к добавлению в структуру опыта новой системы, сформированной при научении.
Процессы модификации ранее сформированных систем, вероятнее всего, происходят при любом формировании опыта. В большинстве исследований консолидации памяти новая информация имплицитно рассматривается как помещаемая на tabula rasa, хотя существует большое количество данных о том, что новая информация вписывается в структуру уже существующего знания (McKenzie, Eichenbaum, 2011). Таким образом, необходимо рассматривать консолидацию как процессы, всегда включающие в себя реконсолидацию (Dudai, 2012). Процессы аккомодационной реконсолидации могут быть детектированы в том случае, если первый из двух последовательно формируемых навыков обеспечивается активностью нейронов, специализированных относительно первого навыка, но не второго. Тогда реорганизация активности нейронов первого навыка при формировании второго будет свидетельствовать о реактивации первого (по времени формирования) элемента индивидуального опыта.
Мы исследовали инструментальный навык касания рычага для получения воды правой или левой вибриссной подушкой животными, находящимися в условиях водной депривации. Известно, что нейроны бочонкового поля соматосенсорной коры активируются при использовании грызунами вибрисс (Harris et al., 1999). Вовлечение нейронов в процессы аккомодационной реконсолидации при формировании второго навыка может быть оценено по индукции в нейронах экспрессии транскрипционного фактора – белка с-Fos (продукта экспрессии раннего гена c-fos), поскольку известно, что индукция экспрессии раннего гена c-fos происходит при обучении и что распределение Fos-положительных нейронов связано с тем, какое поведение приобретается (см., напр.: Анохин, 1997).
Контролируя процесс обучения животных, мы в определенной степени «задавали» историю формирования их индивидуального опыта. Поэтому, последовательно обучая животных двум навыкам, мы могли выявить закономерности активации нейронов первого навыка при формировании второго. Было установлено, что обучение второму, пищедобывательному навыку (не требующему использования вибрисс) вызывает экспрессию с-Fos в достоверно большем числе нейронов бочонкового поля у животных, предварительно обучавшихся инструментальному питьевому («вибриссному») навыку, чем в аналогичной области у контрольных животных, обучавшихся предварительно неинструментальному питьевому навыку (Сварник и др., 2014). Полученные данные позволяют предположить, что активация экспрессии c-Fos при обучении второму навыку происходила не только в новых, еще не специализированных нейронах, но и в тех нейронах, которые уже являлись специализированными относительно системы первого, «вибриссного» навыка, что, вероятно, указывает на происходящий процесс реконсолидации сформированной функциональной системы.
Мы предположили, что при введении животным алкоголя в процессе формирования второго, невибриссного навыка будет обнаружена экспрессия белка c-Fos в нейронах бочонкового поля соматосенсорной коры того полушария, которое является контралатеральным по отношению к вибриссной подушке, использованной во время формирования первого навыка. Это будет свидетельствовать в пользу того, что элемент индивидуального опыта данного навыка реактивируется как при введении, так и без введения алкоголя. Если это так, то как отличаются реактивации в двух сравниваемых ситуациях, одна из которых связана с угнетением активности нейронов недавно сформированных систем?
Для проверки данного предположения и ответа на сформулированный вопрос животных (крысы Long Evans в возрасте 6–8 мес., содержавшиеся в индивидуальных клетках размером 40×25×20 см, расположенных в виварии) последовательно обучали в экспериментальной камере двум навыкам: питьевому и пищевому. Инструментальное питьевое поведение заключалось в том, что животное должно было проводить вибриссной подушкой (только левой или только правой) по краю рычага для получения порции воды в размере 20–30 мкл. Обучение данному виду поведения (на фоне питьевой депривации) проходило поэтапно в течение пяти дней (30-минутные ежедневные сессии). В первый день животные получали подкрепление за нахождение рядом с поилкой, во второй – за поворот головы в сторону педали, в третий – за полный поворот тела в сторону педали, в четвертый – за подход к педали. На последнем (пятом) этапе крыса обучалась касаться рычага вибриссной подушкой для получения порции воды. Весь период обучения длился 11 дней, в течение которых все животные обучились питьевому инструментальному навыку. Животные реализовывали приобретенный навык питьевого поведения в течение еще пяти дней. За 24 ч до сессии с ледующего (пищевого) обу чения у животных забирали корм из домашней клетки для создания пищевой мотивации. Несмотря на то, что животные в течение всего периода первого этапа обучения (питьевое инструментальное поведение) находились на питьевой депривации, а в течение второго этапа обучения (пищевое инструментальное поведение) – на пищевой депривации, потери в весе на период обучения не составили более 20 %. Для адаптации к условиям следующего этапа обучения животные в течение 5 дней до его начала на 5 минут в день помещались в новую экспериментальную клетку, где им предстояло обучиться пищевому невибриссному навыку.
В последний экспериментальный день после интраперитониальной инъекции алкоголя (этанола; 0,5 г/кг) животных помещали на 30 мин в экспериментальную клетку, содержащую педаль и кормушку, для обучения пищедобывательному навыку нажатия лапами на педаль. Нажатие на педаль приводило к появлению порции пищи в кормушке (кубик сыра). Данное пищевое поведение не требовало использования вибрисс как условия достижения результата (в отличие от питьевого поведения, приобретенного ранее). Видеозапись поведения осуществлялась на цифровую видеокамеру, закрепленную на верхней стороне экспериментальной клетки пищедобывательного навыка. Анализ видеозаписи поведения был осуществлен с использованием программы Easy Track, которая позволяет оценивать поведение животного в «зонах интереса». В качестве таковых было выбрано четыре зоны: зона эффективной кормушки, зона эффективной педали, зона неэффективной кормушки, зона неэффективной педали.
Через 75 минут после окончания сессии обучения пищедобывательному навыку животных усыпляли ингаляционным наркозом (эфиром), мозг извлекали и замораживали в парах жидкого азота. Животные группы пассивного контроля были взяты из домашней клетки вивария непосредственно перед извлечением мозга.
Для оценки распределения с-Fos-положительных нейронов в головном мозге были проанализированы бочонковое поле соматосенсорной коры (поскольку известно, что нейроны данной области активируются при использовании грызунами вибрисс), а также ретросплениальная кора, в которой, как нам известно (см.: Горкин, Шевченко, 1995; Александров, 2011б; Александров и др., 2015; Alexandrov et al., 1990а, 1991, 2000; Gavrilov et al., 1998; Svarnik et al., 2005), большой процент нейронов у крыс специализируется относительно пищедобывательного акта инструментального поведения – нажатия на педаль. Анализ распределения Fos-положительных нейронов проводился на фронтальных криостатных 20-микронных срезах головного мозга крыс. Срезы брались с шагом в 80 микрон на уровне 3,36–4,36 от брегмы, что позволило в дальнейшем анализировать соматосенсорную и ретросплениальную кору (Paxinos, Watson, 2009). После фиксации в 4-процентном параформальдегиде и промывки срезы предынкубировались в фосфатном буфере с добавлением 2,5-процентной нормальной сыворотки для снижения неспецифического окрашивания. Выявление индукции экспрессии с-Fos проводилось иммунногистохимически, в соответствии с протоколом стрептавидин-биотин-пироксидазного иммунногистохимического набора (Vectastain Elite ABC KIT, Vector, USA). Для реакции были использованы поликлональные кроличьи антитела к c-Fos (AB-5, Oncogene Science, USA) в разведении 1: 2000 (см.: Сварник и др., 2014). После появления окраски стекла были дегидратидированы проведением через серию спиртов восходящей концентрации и ксилол, а затем заключены под покровные стекла.
Срезы оцифровывались при 10-кратном увеличении на микроскопе Olympus V-110 с помощью высокоразрешающей CCD камеры (Nikon DMX-1200) и вводились в компьютер для анализа распределения иммунопозитивных клеток в мозге. Окрашенные клетки в исследуемых областях мозга были подсчитаны на компьютере с помощью морфометрической программы Image Pro 3.0.
В описываемых здесь экспериментах с введением алкоголя было выявлено, что при формировании второго, пищедобывательного навыка введение алкоголя «блокирует» реактивацию (по белку c-Fos) нейронов систем первого, питьевого навыка. Число Fos-положительных нейронов в контралатеральном бочонковом поле при обучении второму навыку под воздействием алкоголя оказалось достоверно меньшим, чем в ситуации без алкоголя (U Манна – Уитни, z = 2,72; p = 0,006; величина эффекта (effect size) r = 0,79) (см. рисунок 3). Кроме того, животные, находящиеся под влиянием алкоголя, были менее активны, чем животные, не находящиеся под влиянием алкоголя (U Манна – Уитни, z = 2,32, p = 0,02; величина эффекта r = 0,67), что выражалось как в снижении общей длины трека и общей длительности двигательной активности, так и в снижении средней скорости передвижения. Общий паттерн распределения нейрогенетических изменений в коре головного мозга под воздействием алкоголя и без него оказался одинаковым. Но при этом в целом под воздействием алкоголя число активированных нейронов в корковых структурах головного мозга оказалось в разы меньшим, чем без этого воздействия (U Манна – Уитни, p<0,01 для обеих проанализированных структур в обоих полушариях (на рисунке 3 обозначено звездочкой); величина эффекта r = 0,83 для ретросплениальной коры контралатерального полушария относительно используемой вибриссной подушки, r = 0,81 для ретросплениальной коры ипсилатерального полушария; r = 0,79 для бочонкового поля контралатерального полушария, r = 0,83 для бочонкового поля ипсилатерального полушария), что соответствует данным литературы (напр.: Lu et al., 2014).
Таким образом, было установлено, что под воздействием алкоголя меняется число нейрогенетически активных нейронов, вовлеченных в процесс приобретения нового опыта. В частности, меньше нейронов вовлекалось в этот процесс в тех областях, нейроны которых были вовлечены в приобретение первого навыка. Можно предположить, что под воздействием алкоголя дифференциация предыдущего опыта, связанная с аккомодационной реконсолидацией, происходит в меньшей степени, чем без такого воздействия. Возможно, вовлечение нейронов в новое обучение зависит от предыдущей истории их электрической активности (Guzowski et al., 2006) и связано с повышенной возбудимостью мембраны (Silva et al., 2009): поскольку позднее формируемый опыт реактивируется с большей вероятностью, чем более ранний (Сварник, 2016), это может приводить к снижению вероятности вовлечения элементов предыдущего опыта при формировании последующего.
Рис. 3. Распределение нейрогенетических изменений (оцениваемых по белку Fos) в ретросплениальной коре (РС кора, RSA) и бочонковом поле соматосенсорной коры (БП, S1BF) головного мозга крыс при формировании нового навыка без введения алкоголя (белые столбики) и на фоне введения алкоголя (серые столбики), ипси – то же полушарие головного мозга по отношению к использованной в предыдущем опыте вибриссной подушке, кнтр – противоположное полушарие
Известно, что алкоголь может оказывать различное фармакологическое действие. Предполагается, что алкоголь действует на мембранные белки нейрона, в том числе и белки ионных каналов (Peoples et al., 1996), что приводит к подавлению его активности. Недавние исследования показывают, что эффекты алкоголя на нейронную активность варьируют в зависимости от того, в какой структуре находятся нейроны (White et al., 2000). Таким образом, нельзя говорить об общем глобальном влиянии алкоголя на генерацию потенциалов действия: в одних структурах показано увеличение активности нейронов (Huang et al., 2012), а в других, наоборот, подавление активности при введении алкоголя (Verbanck et al., 1990). В наших работах было показано, что введение алкоголя в большей степени подавляет активность нейронов, специализированных относительно вновь приобретенного опыта, причем известно, что доля таких нейронов выше в корковых областях (Alexandrov et al., 1990). В то же время амнестический эффект алкоголя главным образом связывается с подавлением активности NMDA-рецепторов и потенциированием ГАМК-опосредованного ингибирования активности нейронов (Nomura, Matsuki, 2008). Характерно, что плотность распределения NMDA-рецепторов по структурам мозга не одинакова (Petralia et al., 1994), в частности, плотность данных рецепторов выше в верхних слоях коры по сравнению с нижними (Conti et al., 1997), что может быть одним из факторов, лежащих в основе неоднородного влияния алкоголя на генерацию потенциалов действия и более выраженного подавления алкоголем активности специализированных нейронов в верхних слоях коры по сравнению с нижними (Alexandrov et al., 1990).
Экспрессия c-Fos не отражает напрямую повышенную активность нейронов, а маркирует скорее процесс рассогласования, возникающий в нейронах при нехватке у них различных метаболитов, необходимых им для выживания. Формирование функциональной системы, по-видимому, – это возможность для нейронов специализироваться в отношении данной системы, обеспечивать достижение результата на уровне целостного организма и тем самым устранять рассогласование, получая необходимые метаболиты от других клеток организма. Показано, что само по себе введение алкоголя незначительно изменяет число Fos-положительных клеток (Ryabinin et al., 1995; Segovia et al., 2013), однако в стрессовой ситуации число Fos-положительных нейронов снижается по сравнению с «безалкогольным» контролем. Таким образом, снижение числа Fos-положительных нейронов при обучении под воздействием алкоголя может означать снижение числа нейронов, находящихся в состоянии рассогласования и готовых вовлекаться в процессы системогенеза. Образно говоря, алкоголь, подавляя активность NMDA-рецепторов у нейронов, заставляет нейроны временно «забыть» о нужных им метаболитах. Интересно, что нарушение функции NMDA-рецепторов связывают с нарушением процессов рассогласования, оцениваемых, например, по величине негативности рассогласования (Chitty et al., 2015).
Полученные результаты позволяют сделать вывод о том, что при научении в условиях алкогольной регрессии в меньшей степени выражено вовлечение корковых областей в формирование новых элементов опыта. Это вовлечение основано на селекции активированных нейронов для последующей их специализации (см.: Александров, Сварник, 2009) в отношении формирующегося элемента. А селекция, как отмечал еще У. Джеймс, является основой формирования памяти (James, 1890). В условиях алкогольной регрессии также менее выражена реорганизация, «подстройка» уже имевшегося у индивида опыта, которая обеспечивает взаимосогласование раннее образованных и вновь сформированных систем.