bannerbannerbanner
Проектирование медицинских изделий

Куват Темиргалиевич Момыналиев
Проектирование медицинских изделий

Полная версия

2.6 Примеры алгоритмов проведения классификации медицинских изделий

ПРИМЕЧАНИЕ. В данном разделе представлены диаграммы на рисунках 2.4 – 2.6 – только в иллюстративных целях, и определение класса риска для конкретного изделия должно производиться на основе самих правил, а не деревьев решений. Если медицинское изделие имеет характеристики, которые относят его более чем к одному классу, оценка соответствия должна основываться на самом высоком классе.

Дерево проведения классификации неинвазивных медицинских изделий в зависимости от потенциального риска применения.


Рисунок 2.4 – Дерево проведения классификации неинвазивных медицинских изделий в зависимости от потенциального риска применения




Рисунок 2.5 – Алгоритм проведения классификации инвазивных медицинских изделий, не являющихся хирургическими




Рисунок 2.6 – Алгоритм проведения классификации медицинских изделий для диагностики in vitro в зависимости от потенциального риска применения


РЕЗЮМЕ

Классификация медицинских изделий представляет собой систему, основанную на оценке потенциального риска, который определяется как комбинация вероятности причинения вреда при применении медицинского изделия в соответствии с назначением, определенным производителем и тяжести этого вреда. Классификация позволяет всем участникам процесса регулирования понять риск, который представляет изделие. В целом, чем выше класс риска, тем больше шансов, что изделие может нанести какой-то вред.

Для медицинских изделий учитывается ряд критериев, которые можно комбинировать различными способами: длительность применения медицинских изделий, инвазивность медицинских изделий, наличие контакта медицинских изделий с человеческим телом или взаимосвязи с ним, способ введения медицинских изделий в тело человека (через анатомические полости или хирургическим путем), применение медицинских изделий для жизненно важных органов и систем (сердце, центральная система кровообращения, центральная нервная система), применение источников энергии.

Классификация медицинских изделий для диагностики in vitro основана на следующих критериях: предполагаемое использование и показания к применению, указанные производителем, технические/научные/медицинские знания предполагаемого пользователя (неспециалиста или медицинского работника), важность информации для постановки диагноза (единственный определяющий фактор или один из нескольких), принимая во внимание естественное течение заболевания или расстройства, включая наличие признаков и симптомов, которые могут служить ориентиром для врача и влияние результата (истинное или ложное) на человека и/или на общественное здоровье.

В этой главе мы познакомились как классифицировать медицинские изделия, возможные риски применения для пациента, разработчика. Приведены примеры медицинских изделий, как можно самостоятельно определить класс потенциального риска применения медицинских изделий, чтобы при регистрации избежать ошибок.



Задача 1.

Ознакомиться с Решением Коллегии Евразийской экономической комиссии от 22 декабря 2015 г. N 173 "Об утверждении Правил классификации медицинских изделий в зависимости от потенциального риска применения" и Приказ Министерства здравоохранения РФ от 6 июня 2012 г. N 4н "Об утверждении номенклатурной классификации медицинских изделий".

Задача 2.

Определить класс потенциального риска применения в России и ЕАЭС для следующих медицинских изделий:

1) Одноразовый скальпель, хирургический;

2) Стоматологическая пломба, временная;

3) Рентгеновский аппарат;

4) Программное обеспечение для установления (диагноз) нарушения мозгового кровообращения;

5) Инвазивное изделие для ингаляционного введения лекарственного средства.

5) Иммунохимический анализатор для диагностики in vitro.

Задача 3.

Создайте диаграмму, аналогичную алгоритмам проведения классификации медицинских изделий (раздел 2.6 Главы), для электронного термометра и сердечно-сосудистого катетера.





1. «Принципы классификации медицинских изделий» Целевой группы по глобальной гармонизации (Principles of Medical Devices Classification, Global Harmonization Task Force (GHTF), 2005),

2. «Принципы классификации медицинских изделий для диагностики ин витро» Международного форума регуляторов медицинских изделий (Principles of In Vitro Diag- nostic (IVD) Medical Devices Classification International Medical Device Regulators Forum (IMDRF), 2014).

3. Решение Коллегии Евразийской экономической комиссии от 22 декабря 2015 г. N 173 "Об утверждении Правил классификации медицинских изделий в зависимости от потенциального риска применения"

4. Приказ Министерства здравоохранения РФ от 6 июня 2012 г. № 4н "Об утверждении номенклатурной классификации медицинских изделий".



03 Модели и процессы проектирования

Есть две причины, по которым необходимо контролировать процессы проектирования. Первая причина – нормативная, например требования стандартов. Во всех нормативных документах по медицинским изделиям (например, ISO 13485 и ISO 9001) прописано требование контролировать процесс проектирования, чтобы выполнять свои обязательства перед потребителями медицинских изделий. Вторая причина связана с жизнью компании. Неконтролируемое проектирование приведет к результатам, не соответствующим цели. Разработчики медицинского оборудования должны работать качественно и продуманно с самого начала. Контроль процесса также экономит время и деньги (экономия расходов на персонал и т. д.). Это приводит к сокращению времени выхода на рынок, что дает очевидные преимущества.

Часто ошибочно полагают, что существует конфликт между процессом и тем, кто им управляет, но это не так. Прежде чем выстраивать контроль, нужно понять процесс и как он изменяет входные данные на выходные. Для этого нужно измерить вход и выход. Именно отношения между ними и есть процесс.

На рисунке 3.1А деятельность по проектированию показана в виде типичной блок-схемы управления. Процесс проектирования представляет собой «разомкнутый цикл»: обратной связи нет, выход не влияет и, что хуже всего, нет возможности измерить, правильный или неправильный результат. Инженеры по управлению исправляют это, «замыкая петлю» – вводя обратную связь (рисунок 3.1Б).





Рисунок 3.1 – А. Процесс проектирования в виде «разомкнутого цикла». Б. Процесс проектирования в виде «замкнутой петли».


Известно, что замкнутые системы более эффективны (Schrwazenbach & Gill, 1992). Эту идею очень быстро подхватило сообщество «Шесть сигм» (six sigma, 6σ).



Метод разработан в корпорации Motorola в 1980-е годы. Название подхода происходит от греческой буквы сигма σ, которая обозначает в статистическом анализе понятие среднеквадратического отклонения.



Уровень безошибочности производственного процесса в этом методе определяется по числу σ, которое представляет собой удельный вес бездефектной продукции в процентах на выходе процесса.

Процесс с качеством 6σ на выходе характеризует 99,99966 % случаев без дефектов, или не более 3,4 дефектов на 1 млн операций. В корпорации Motorola достижение показателя качества 6σ для всех производственных процессов определено в качестве цели, отсюда и пошло наименование концепции.



Принцип «определить, измерить, анализировать, улучшить, контролировать» является фундаментальной концепцией управления производством «Шесть сигм» (Бичено и Катервуд, 2005). Нет причин не формировать такую же связь – есть необходимость контролировать процесс проектирования. Для того чтобы контролировать его, надо его определить. Впоследствии будет возможно измерить и проанализировать результаты (входные и выходные данные). Таким образом, можно постоянно совершенствоваться.

В этой и последующих главах будут представлены модели и процессы проектирования, которые позволят разработать собственный процесс проектирования.

3.1 Модели проектирования

Существуют две основные модели инженерного дизайна. Первый был разработан Палом и Бейтцем, второй – Пью. Медицинские изделия являются самостоятельными продуктами, будь то программное или аппаратное обеспечение. Они должны быть сделаны и спроектированы, поэтому философия инженерного проектирования является наиболее подходящей. Однако, нужно интегрироваться с графическими дизайнерами, дизайнерами продуктов и т. д., поэтому рассмотрим подходы, как включить их в «семейство инженерного дизайна».

3.1.1 Модели Пала, Бейтца и Пью

Модели процесса проектирования Пала и Бейтца почти 30 лет, но основные понятия по- прежнему заслуживают изучения. Эта и следующая модель Пью представляют собой линейные процессы. На рисунке 3.2 показана интерпретация расчетной модели, предложенной Палом и Бейтцем. Левый конец – это начало процесса, известное как «потребность». Некоторые называют это кратким описанием (brief). Этот термин часто используют дизайнеры продуктов.

 

Откуда или когда возникает потребность, часто является предметом споров, но она всегда существует. По сути, о потребности могут заявить один из пяти источников:

1. клиент, который конкретно о чем-то просит, это неотложная потребность;

2. отдел маркетинга, который транслирует информацию кого-то еще;

3. исследование рынка, позволяющее предсказать тенденцию и сформулировать предполагаемую потребность;

4. исследования и разработки, когда прорывная технология изобрела потребность в ее использовании, часто называют перспективная потребность;

5. эволюционная потребность, связанная с эволюцией изделия.



Рисунок 3.2 – Модель линейного проектирования. Стрелки назад и вперед показывают обратную связь между фазами


Первый этап (определение потребности), по сути, можно считать фазой разъяснения. Этот этап позволяет дизайнеру (или группе дизайнеров) полностью осознать потребность и среду, в которой потребность проявляется. Все это необходимо для разработки полной спецификации перед переходом к этапу концептуального проектирования (спецификация и концепция). Эта фаза позволяет разработчику сформулировать первоначальные идеи, из которых можно выбрать одно решение (проект) для перехода к этапу воплощения, где разрабатывается прототип. После принятия прототип может быть передан на разработку для производства (детальный проект) и формирования окончательной документации.

Пью поднял концепцию спецификации продукта на более высокий уровень (рисунок 3.3). Он определил, что если потратить время на разработку хорошей спецификации, то все остальное фазы можно реализовать достаточно быстро.



Рисунок 3.3 – Адаптированная модель Total Design


В отличие от оригинальной модели Пала и Бейтца, Пью включил производство в процесс проектирования. Это важный шаг в модели дизайна, так как дизайнер фокусируется на создании лучшего дизайна при меньших затратах за счет оптимизации выбора материалов и компонентов, сокращения количества деталей и минимизацию объема производственных операций, необходимых для деталей во время сборки. В итоге следуя этой идеологии, конечный продукт должен быть проще в производстве, а производство должно занимать меньше времени по сравнению с оригинальным дизайном. Данный подход воплотился в подходы Design for X и Design-for-Manufacture.

3.1.2 Дивергентно-конвергентная модель

Поскольку модели абстрактны в мышлении, бывает трудно визуализировать реальность. Поэтому Огродник предложил рассматривать три фазы в дизайне изделия (рисунок 3.4). Первая общая фаза – «открытая»: это означает, что дизайнер должен быть открыт для всего. И этот этап работает только в том случае, если дизайнер действительно открыт для предложений. Средняя фаза, «выживание наиболее приспособленных», является фазой отбора. Здесь дизайнер выбирает лучший вариант развития проекта. Третья фаза является «выборочной». Здесь дизайнер избирательно подходит к тому, что он делает, и выполняемые задачи часто строго предписаны.



Рисунок 3.4 – Модель проектирования медицинских изделий


Следует отметить, что в самом начале процесс методичен (констатация потребности), но далее во всем процессе должна преобладать творческая мысль, чтобы создавать варианты изделия, определить и исследовать их. Однако вскоре варианты иссякнут, и начнется тяжелая работа по выбору лидера среди решений продукта, а затем по созданию прототипа изделия. Рисунок 3.5 иллюстрирует это. В начале будут некоторые первостепенные мысли о конечном результате и это может быть опасно. Первоначальная идея дизайнера о продукте может стать «священной коровой», и что бы ни случилось, эта идея может преобладать, и ничто не может ее сдвинуть.



Рисунок 3.5 – Процесс проектирования против сгенерированных идей


Начиная с одной потребности, возникает множество идей, которые могли бы удовлетворить эту потребность, поэтому воронка расширяется, чтобы продемонстрировать расширение идей. Но в итоге нужно выбрать идею и создать единое решение, полностью отвечающее требованиям о потребности. Следовательно, это сужает процесс, что графически проиллюстрировано на рисунке 3.6. В самой левой части процесса создается один документ: изложение потребности или техническое задание. Этот документ обрисовывает в общих чертах спрос и дает некоторое представление о требованиях. Он не является полным, чтобы начать процесс проектирования, но достаточно подробным, чтобы принять решение, продолжать его или нет. Чтобы завершить этап уточнения, необходимо подготовить подробную спецификацию продукта или спецификацию дизайна продукта (СДП). Для этого нужно погрузиться в работу, опросить конечных пользователей, обсудить нужды и потребности как клиентов, так и субподрядчиков. Вполне вероятно, что СДП пройдет несколько этапов и будет подготовлено несколько проектов СДП, прежде чем согласуют окончательный вариант.



Рисунок 3.6 – Модель дизайна Огородника


Следующий этап – разрабатываются решения, отвечающие требованиям СДП. Теперь следует заполнить пространство дизайна многочисленными идеями – чем их больше, тем лучше. На рис. 3.6 показано, что из СДП возникает несколько идей. Затем нужно сократить пространство до абсолютного чемпиона: единственного решения, которое, прежде всего, соответствует списку требований, изложенных в СДП. Спецификация дизайна продукта очень важна – это единственный документ, из которого исходит все остальное. Расширение идей, которое было разрешено и поддержано на ранних стадиях, приводит к здоровому, надежному и динамичному процессу отбора, который позволяет выбрать единственную идею, выделяющуюся среди всех остальных. Вот почему Огородник предлагает рассматривать эту модель как дивергентно-конвергентную, поскольку она заставляет проявлять творческий подход, но структурированным и надежным образом.

По сравнению с тем, где ранние этапы динамичные, последний этап воплощения может показаться монотонным. Однако этот этап очень ценен, поскольку именно на нем принимаются важные решения: выполняются стандартные задачи и исследования, чтобы создать рабочий проект, отвечающий потребностям СДП. Они могут быть повторяющимися, но в этом однообразии скрыт очевидный факт, что каждое отдельное изделие на самом деле состоит из множества компонентов. Каждый компонент со своими потребностями, для каждого нужно выбрать единственное решение.

На протяжении всего процесса нужно будет создавать документы. Они находятся в файле дизайна. Важно то, что он записывает весь процесс проектирования от начала до конца. Каждая встреча, каждое решение, каждое изменение должны быть записаны здесь. Весь процесс завершается техническим файлом, который полностью описывает изделие: как его сделать, как оно было разработано, оценено, насколько оно соответствует основным требованиям. Если не следовать структурированному подходу к проектированию, то невозможно будет создать технический файл с достаточной строгостью, чтобы пройти регистрацию медицинского изделия.

3.1.3 Биодизайн как модель для разработки инновационных медицинских изделий

Инновации постоянно упоминаются как императив для стимулирования роста, однако действенное и согласованное определение термина, применимого к различным условиям и целям, не является тривиальной задачей. Всемирная организация здравоохранения (ВОЗ) объясняет, что «инновации в области здравоохранения» повышают эффективность, результативность, качество, устойчивость, безопасность и/или доступность здравоохранения. Это определение включает «новые или усовершенствованные» политики здравоохранения, практики, системы, продукты и технологии, услуги и методы доставки, которые приводят к улучшению здравоохранения.

Одной из ошибок, которую допускают исследователи, является тенденция переносить подходы из области биофармацевтики (макромолекулярные препараты и биопрепараты) в область медицинских изделий. Хотя эти две области во многом совпадают, важно понимать, что подходы к разработке в них имеют фундаментальные различия.

Медицинские изделия наиболее тесно связаны с клиническими областями, такими как хирургия и педиатрия, с врачами и специалистами, которые находятся «в окопах», непосредственно наблюдая за потребностями пациентов и эффективностью медицинских технологий. Что касается инженерных знаний, медицинское изделие имеет тенденцию привлекать инженеров-механиков, электриков и, конечно же, биомедицинских инженеров. Биофарма наиболее тесно связана с фундаментальными медицинскими науками (фармакологией, молекулярной биологией и генетикой), а также с информатикой и химической инженерией.

Соответственно, инновационные процессы для медицины и биофармацевтики принципиально различаются. Инновации в области медицинских технологий часто начинаются исключительно с клинических потребностей. Проектировщик определяет и описывает клинические потребности на протяжении длительного времени, прежде чем сделать первые шаги к поиску решения. В биотехнологии и фармацевтике напротив: появление нового биологического или химического препарата обычно связано с научным прорывом. Затем, в процессе оценки возможностей терапевтическое средство сопоставляется с потенциальными клиническими потребностями, а затем проводятся доклинические и клинические исследования для выявления наиболее многообещающих возможностей.

C точки зрения продвижения технологий, инновация – это предпринимательский процесс, включающий ряд шагов от идеи к изобретению, разработке и коммерциализации. С точки зрения спроса инновации – это способ удовлетворить конкретные клинические потребности, которые еще не решены. Данный подход реализован в одной из старейших программ в области наук о жизни – Stanford Biodesign, которая направлена на инновации в области биомедицинских технологий (в частности, медицинских изделий). Главная догма процесса Стэнфордского биодизайна заключается в том, что «хорошо описанная потребность – это ДНК великого изобретения». Этот подход к инновациям, основанный на потребностях, начинается в клинической среде. Практикующие специалисты идеально подходят для того, чтобы возглавить процесс. Об успешности такой программы говорит то, что на основе подхода Стэнфордского биодизайна была запущена деятельность более 50 компаний в области медицинских технологий, которые помогли более девяти миллионов пациентов по всему миру.

Программа Стэнфордского биодизайна представляет собой карту инновационного процесса в области медицинских технологий, ориентированного на потребности (рисунок 3.7). Этот подход разделяет последовательность процесса инноваций на три основных этапа: определение (потребностей), изобретение и внедрение.

Из трех этапов наиболее важным является по-прежнему определение потребности (известное в обучении дизайну как «оценка возможностей»). Первая фаза выявления и поиска потребностей представляет собой творческий процесс сбора большого количества клинических потребностей путем непосредственного наблюдения за повседневным оказанием медицинской помощи с точки зрения множества заинтересованных лиц (пациентов, их семей, врачей, медсестр и т. д.). На этом этапе важно не судить о том, насколько важной или многообещающей может быть каждая отдельная потребность. Дидактический момент здесь состоит в демонстрации того, что найти потребность можно относительно легко. Фактически Стэнфордская программа биодизайна просит своих участников составить список из не менее 200 потребностей, прежде чем перейти к следующему этапу проверки потребностей.

В процессе выявления потребностей начинает проявляться доменная специфика медицинских технологий и стартует настоящая работа по выработке глубокого понимания потребности. Здесь большой список возможных потребностей фильтруется по ряду различных параметров, включая текущее понимание патофизиологии заболевания, существующие и новые варианты лечения, потенциальный рынок для новой технологии и различные интересы заинтересованных сторон. Новатор ищет ключевое понятие в этих областях, которое открывает потенциал для нового решения. Эти идеи могут исходить из различных источников: новое понимание патофизиологии, основанное на зарождающейся клинической науке, например наблюдаемая реакция на новую терапию, выявление примеров неэффективного, дорогостоящего или сложного рабочего процесса или просто опыт пациента. Например, с первых дней ангиопластики пациенты жаловались, что самой сложной и болезненной частью было удержание давления на ране после удаления катетера. Ученым потребовалось 15 лет, чтобы осознать, что это важная клиническая необходимость. Исследователи быстро выяснили, что эту потребность можно решить с помощью новых изделий, предназначенных для активного закрытия места входа в кровеносный сосуд.

 


Рисунок 3.7 – Карта процесса биодизайна инноваций в области медицинских технологий, показывающая продвижение по трем основным этапам (определение, изобретение и внедрение). Отдельные поля представляют собой области содержания, формирующие основу для оценки основных компетенций. [ИС, интеллектуальная собственность; НИОКР, исследования и разработки]


Центральная особенность процесса фильтрации потребностей заключается в сравнении потребностей друг с другом. Требуется значительный объем исследований, чтобы определить и проанализировать параметры информационной матрицы для данной клинической потребности, чтобы определить, стоит ли поиск решения времени, усилий и инвестиций. Необходимость выбрать наилучшую потребность из большого списка требует дисциплинированного подхода, который позволяет избежать ошибок неопытным изобретателям, которые быстро цепляются за проблему и изобретают решение без усердия, необходимого для оценки относительной важности потребности и обязательных характеристик успешного решения.

Второй важный шаг в этом процессе – изобретение. Командный мозговой штурм опирается на опыт инженеров и медиков. Команды создают несколько возможных решений для каждой потребности. Как только создается большое количество концепций, начинается процесс фильтрации, в ходе которого несколько концепций сравниваются и выбирается небольшое количество лидеров для дальнейшего прототипирования и тестирования. Общая форма этапов выявления потребностей и изобретательства аналогична: генерируются множественные возможности и отфильтровываются до лучшего из группы решений (рисунок 3.8).

Третий этап процесса – реализация, он предполагает подробное рассмотрение потенциала коммерциализации. Здесь окончательные концепции проходят ранний процесс разработки, в ходе которого проводится оценка жизнеспособности интеллектуальной собственности, инженерной реализуемости, дизайна доклинических и клинических испытаний, понимания вероятных путей регулирования и возмещения расходов, планирования продаж и распространения, разработки финансовых моделей и финансирования, стратегии и рассмотрение альтернативных планов коммерциализации. Эта часть обучения требует реального опыта в различных областях, в идеале от новаторов, которые имеют опыт разработки медицинских технологий для рынка.



Рисунок 3.8 – Показан концептуальный подход к процессу генерации понятий. Входными данными для этапа «Определение» процесса являются многочисленные клинические потребности, которые отфильтровываются до тех немногих потребностей с наиболее многообещающими характеристиками. Эти потребности полностью исследуются, создавая спецификацию потребностей (спецификацию), в которой подробно описываются характеристики идеального решения. На этапе «Изобретение» создается несколько концепций для каждой потребности. Затем второй процесс фильтрации выбирает самую сильную концепцию (ту, которая лучше всего соответствует его спецификации потребностей), чтобы перейти к разработке


Пример реализации подхода Биодизайн

«Студентка колледжа, родившаяся со spina bifida, была парализована от талии вниз. Не имея возможности добровольно опорожнить мочевой пузырь, она изо всех сил пыталась самокатетеризоваться несколько раз каждый день и ночь. Несмотря на ее ловкость, ей было трудно получить доступ к уретре и поэтому каждый год заражалась многочисленными инфекциями мочевыводящих путей (ИМП)». В то время как этот конкретный пациент был


вымышленным персонажем Стэнфордского уролога доктора Комитера К., он написал ее историю, основанную на годах работы с пациентами с нейрогенным мочевым пузырем, состоянием, при котором пациенту не хватает контроля над мочевым пузырем из-за проблем с нервной системой.

Описание случая было одним из нескольких, подготовленных для студентов курса Bio- design, в котором студенты работают в командах, чтобы определить конкретную проблему здравоохранения, определить значимый результат для достижения, а затем использовать все, что они узнали в области биоинженерии, для разработки нового решения.

Команда начала с исследования различных форм недержания мочи. Они решили сосредоточиться на пациентах с нейрогенным переполнением недержания мочи (характеризуется непроизвольным высвобождением мочи из переполненного мочевого пузыря), что означало, что их решение поможет не только пациентам с spina bifida, но и потенциально другим людям с той же проблемой.

Затем команда начала думать о том, что они могут сделать, чтобы значительно улучшить качество жизни таких пациентов. "У нас было много ярких идей, таких как использование электрической стимуляции мочевого пузыря для лечения этого состояния. Но мы заставили себя оставаться независимыми от решения и в конечном итоге сосредоточились на проблеме инфекций мочевыводящих путей. Если бы наше решение могло снизить ИМП, это не только улучшило бы качество жизни пациента за счет снижения дискомфорта, дополнительных посещений врача и использования антибиотиков, но и привлекло бы интерес заинтересованных сторон, таких как врачи и больницы" – заявил один из студентов.

Перед задачей найти способ понять опыт пациента, исследователи обнаружили методику, называемую картографированием путешествия, которая проводит пациента через определенный процесс или стандарт ухода и заставляет пациента оценивать сложность каждого шага. Команда создала подробный вопросник о самокатетеризации и обратилась в социальных сетях к группе поддержки по вопросам недержания мочи. В итоге было получено почти 50 ответов. Результаты четко выявили самые сложные части процесса. Самым сложным для женщин была сложность поиска уретры для вставки катетера. Команда также узнала, что для женщин поиск уретры часто требует привязки зеркала к ноге, что может сделать процесс еще более трудоемким.

С глубоким пониманием проблемы команда начала рассматривать решения. Поэкспериментировав с несколькими техниками, они решили, что самым простым и интуитивно понятным подходом для женщин было бы использовать влагалище в качестве анатомического доступа, чтобы помочь найти уретру и расположить катетер у ее входа. Они разработали более 40 прототипов портативного устройства для достижения этой цели, а затем напечатали наиболее перспективные с помощью 3Д-печати.

Однако тестирование конструкций оказалось сложным, так как это инвазивный процесс, который не привлекает здоровых добровольцев. Исследователи проявили творческий подход. Они сделали несколько шорт с искусственным влагалищем и уретрой и использовали шорты, чтобы проверить каждый прототип на себе. Этот процесс помог им сузить количество вариантов до трех. После более чем 40 самокатетеризаций с завязанными глазами каждой командой был выбран свой лучший дизайн.

К концу весеннего квартала у студентов был рабочий прототип своего изделия. Они подали предварительный патент и, при расширении программы финансирования NEXT от Stanford Biodesign, выпустили еще более доработанное изделия с использованием медицинского пластика. Они приняли участие в конкурсе спонсируемом NIH, и выиграли венчурный приз в размере 15 000 долларов. Команда студентов – разработчиков в настоящее время изучают пути регулирования и планируют следующие шаги для продвижения изделия, включая тестирование удобства использования изделия с реальными пациентами.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41 
Рейтинг@Mail.ru