Litres Baner
Технологический расчет нефтяных процессов и аппаратов методом конечных элементов

Константин Владимирович Ефанов
Технологический расчет нефтяных процессов и аппаратов методом конечных элементов

Аналитические теории турбулентности строятся на статическом подходе к описанию турбулентности [14,с.337]. Динамические параметры в этих теориях являются средними характеристиками течения потока.

Модели переноса турбулентности являются упрощенными моделями турбулентности с эмпирическими параметрами, получаемыми по результатам эксперимента. Динамика взаимодействия между масштабами турбулентной пульсации рассматривается ограниченно.

4.2 Метод расчета

Direct

Numerical

Simulation

Метод прямого численного моделирования DNS – Direct Numerical Simulation предложен в работе Orszag, S. A., and Patterson, G. S. в 1972 г.

Многие авторы отмечают о том, что этот метод наиболее требователен к вычислительным ресурсам. Однако, в настоящее время существуют центры с суперкомпьютерами, выполняются параллельные вычисления и используются другие способы для выполнения затратных расчетов. На основании этого, метод DNS может быть внедрен в практику расчета проточной части насосов для получения наиболее точного результата расчета.

По методу DNS решаются уравнения Навье-Стокса напрямую непосредственно без применения моделей турбулентности (например, модели «k») в отличие от других методов расчета.

При решении уравнений Навье-Стокса находят для любой точки в потоке скорость течения и давление. Результатом расчета по методу DNS является нахождение этих параметров потока.

По методу DNS возможно выполнение расчета течения для различных значений числа Re.

4.3

Модель турбулентности «k – ε»

Существует модель однородной изотропной турбулентности, но с помощью её нельзя провести описание реального потока [15,с.16]. Существует модель локально изотропной турбулентности. Согласно этой модели турбулентные пульсации для мелких масштабов с большим числом Рейнольдса можно рассматривать как однородные изотропные. Колмогоров ввел гипотезу о том, что статический режим для мелких масштабов зависит от коэффициента вязкости k и скорости (средней) диссипации энергии ε.

Масштаб вихрей, на который влияет вязкость получается из этой гипотезы Колмогорова с учетом соображений размерности [15,с.18]:


Между масштабом больших вихрей L и масштабом мелких вихрей η, диссипация энергии ε определяет статистический режим турбулентности (так как вязкость влияет только на мелкие масштабы).

В работе [14,с.34] отмечено, что в терминах теории вероятностей описать явление турбулентности нельзя без использования общих гипотез, в основе которых эмпирические данные. Далее он указывает о том, что с использованием сложного экспериментального оборудования понимание процессов явления турбулентности улучшается.

Рейтинг@Mail.ru