Litres Baner
Механизмы неорганических реакций выплавки чугуна и стали

Константин Владимирович Ефанов
Механизмы неорганических реакций выплавки чугуна и стали

Механизмы реакций выплавки стали

Сталь получают из чугуна снижением содержания углерода и удалением растворенных примесей марганца, кремния, серы, фосфора. Основной реакцией является окисление углерода [6,с.98] для получения стали из чугуна, в котором содержание углерода до 4%.

В отличии от доменных печей, в сталеплавильных агрегатах атмосфера окислительная.

Окислительная атмосфера создается продувки ванны со сталью кислородом.

__

Железо, являсь основным компонентом, окисляется до оксида FeO. Этот оксид затем вступает в химические реакуии окисления примесей, в результате которых железо вновь восстанавливается.

Fe + О2 → 2FeО

2FeO + Si → SiO2 + 2Fe

FeO + Mn → MnO + Fe

FeO + С → CO + Fe

Вместе с тем, окисление примесей может происходить кислородом напрямую:

С + О2 → СО → СО2

Si + О2 → SiО2

2Mn + О2 → 2MnО

__

В химии углеводородов рассматриваются механизмы реакций на поверхности кристалла. Считается, что молекулы перед взаимодействием адсорбируются на поверхности металла и за счет связей с металлом, ослабляются связи в молекулах, после чего становится возможным реакция между двумя молекулами и десорбция продуктов с поверхности. Например, для таких процессов можно записать схему:


В механизмах реакций в кристаллах отличие состоит в том, что молекулы входят в состав кристаллической решетки и реакции происходят в слоях решетки.

Схему превращений кислорода можно записать в виде [35,с.39]:



Молекулы О2 распадаются на два иона, которые перемещаются в вакансии решетки (в пустоты решетки) и образуют химическую связь с атомами железа. После химической адсорбции О2 на поверхности, происходит перенос электрона из решетки на молекулу О2. После этого молекула О2 диссоциирует на ионы. Центр адсорбции перестраивается и кислород переходит в структуру решетки кристалла. Кислород может находиться кроме ионов в виде поверхностных окислов различного состава.

Перестройка поверхности решетки металла происходит под действием химической адсорбции или непосредственно из-за реакций окисления [35,с40].

Для кислорода можно предположить существование вид химической абсорбции:



Точные представления получаются квантово-механически расчетом для кластера. Затем происходит распад связи О-О и встраивание кислородного радикала в решетку.

Полинг в работе [35,с.179] указывает структуру кислорода в виде бирадикала с двумя неспаренными атомами:



Структура с двойной связью является ошибочной [35,с.179]:



Молекула кислорода имеет электронную конфигурацию:



находится в триплетном состоянии, т.е. с одним неспаренным электроном на одной орбитали.

Условная схема sp3-гибридизации атома уислорода О:



Упрощенная наглядная схема молекулы кислорода (стабильного бирадикала):



Наличие одного неспаренного электрона на орбитали соответствует радикалу (для молекулы – бирадикалу) и соответствует структуре Полинга. Здесь показаны орбитали молекулы с сохранением индивидуальных орбиталей для каждого атома.

Поэтому для рассматриваемой реакции окисления кристалла железа безразлично окисляет непосредственно молекула О2 или радикалы, полученные после распада молекулы. Точный ответ можно найти квантово-механическим расчетом в компбютерной программе.

Атомы после соединения в молекулу О2 имеют общие орбитали, которые выглядят по-другому и рассчитываются методом молекулярных орбиталей.

Распределение электронной плотности по данным Ахметова [12,с.64]:



Поэтому молекула кислорода может непосредственно окислять атомы железа, или окислять могут кислородные радикалы. Точный механизм атаки кислорода может быть установлен только квантово-химическим расчетом в специальном программном пакете.

Рассмотрим механизм окисления решетки из атомов железа молекулой кислорода согласно схемы Fe + О2 → 2FeО:



Итак, записан механизм реакции окисления кристаллической решетки железа кислородом О2.

__

В начальном моменте химической реакции на границе раздела компонентов образуется слой твердого продукта. Затем взаимодействующие твердые вещества переходят через этот слой. Реакция протекает по схеме:

А(тв) + В(тв) → С(тв) + D(тв)

Также известны реакции внедрения, в которых один их компонентов переходит в решетку другого компонента и образует соединение.

Скорость образования твердого продукта не является лимитирующей реакцией процесса [36,с.163], скорость диффузии веществ через этот твердый слой лимитирует процесс.

В теории твердофазных реакций используются представления Вагнера [36,с.170]:

1. Диффузией по поверхности разделяющего твердого слоя пренебрегают так как в слое отсутствуют поры;

2. Скорость реакции выше, чем скорость диффузии, которая лимитирует скорость процесса;

3. Сечения слоя электронейтральны, ионы переносятся независимо друг от друга.

В смесях твердых веществ химическая реакция происходит в местах частиц с расстоянием не более 0,1 нм [36,с.170]. Реализация химического взаимодействия лучше происходит для порошков по сравнению с агломератами за счет увеличивающегося при растирании контакта поверхностей.

К основным проблемам реакций между твердыми телами относятся [37,с.23] наличие затрудняющего слоя и относительной неподвижногости одного из реагентов. При нагревании после образования слоя продукта скорость определяется диффузией одного из реагентов.

Наличие твердых растворов влияет на кинетику реакции твердых веществ. В этом случае кинетика делится на два типа: 1) реакционная смесь с чистыми реагентами, 2) реакционная смесь, в которой один компонент предварительно насыщен другим компонентом.

___

Состав твердого раствора железа с углеродом показывается на диаграмме «железо-углерод» [7,с.115]:



Диаграмма «железо-углерод» обозначает границы по температуре и концентрации существования форм кристаллических решеток (структур) железоуглеродистых сталей.

На диаграмме линии стабильного равновесия C’D’, E’C’, S’E’, P’S’K’, P’Q’. Устойчивые растворы углерода в железе выше линии ABC’D’. Линия AHN ограничивает однофазную область твердого раствора углерода в α-, γ-, δ-железе. Линия NIE’SG соответствует твердому γ-раствору, линия GP’Q’ соответствует твердому α-раствору. Оставшиеся области на диаграмме соответсвуют двухфазным сплавам. ABH – жидкий сплав и δ-феррит (твердый раствор), HJN – γ-аустенит и δ-феррит (твердые растворы), JBCE – жидкий сплав и γ-твердый раствор (аустенит), DCF – жидкий сплав и цементит, ECFKS – аустенит (γ-твердый раствор) и цементит, GSP – феррит и аустенит (α- и γ-твердые растворы), QPSK – феррит (α-твердый раствор) и цементит. На линии HJB для перекритической температуры три фазы – жидкость, δ-феррит, аустенит. На линии E’C’F’ для эвтектической температуры в стабильном равновесном состоянии фазы жидкости, аустенита, графита, в метастабильном состоянии по линии ECF фазы жидкости, аустенита и цементита. На линии PSK при эвтектоидной температуре (метастабильное равновесие) фазы состоят из аустенита, феррита и цементита, на линии P’S’K’ при эвтектоидной температуре (стабильное равновесие) фазы состоят из аустенита, феррита, графита.

На диаграмме магнитному превращению феррита и цементита соответствуют горизонтальные линии при 768 и 210°С. Феррит имеет ферримагнитные свойства ниже 768°С, выше феррит парамагнитен. Цементит свыше 210°С (точка Кюри) переходит в парамагнитное состояние из ферримагнитного состояния.

Сплавы, содержащие до 0,5% углерода, кристаллизуются при температурах по линии АВ. Сплавы, содержащие от 0,1 до 0,5% углерода, кристаллизуются с первоначальным образованием δ-твердого раствора, который при охлаждении до линии HJB (перекритическая температура) переходит в γ-твердый раствор аустенита (за счет взаимодействия расплава и δ-твердого раствора). Сплавы, содержащие до 0,1% углерода, кристаллизуются в δ-твердый раствор.

Сплавы, содержащие от 0,5 до 2% углерода, кристаллизуются в γ-твердый раствор, начало кристаллизации на линии BC, окончание на линии JE.

Равновесными структурами стали считаются структуры, которые при нормальной температуре состоят из фаз феррита, цементита или перлита.

Структура только из феррита установлена только для случая технически чистого железа [7,с.117]. Феррит имеет низкую прочность и высокую пластичность. Цементит имеет высокую твердость и хрупкость. Структурно свободный цементит установлен только для малоуглеродистых сталей, вместе с тем, в структуре стали цементит виден при высоком содержании углерода. Перлит является смесью фаз феррита и цементита. Аустенит является твердым раствором углерода в железе, характеризуется пластичностью.

Структура кристаллической решетки стали определяется химическим составом сплава и термической обработкой.

 

Термическая обработка предназначена для изменения структуры сплава (полиморфные превращения, ограниченная растворимость в твердом компоненте другого компонента сплава).

В результате полиморфного превращения α-железа в γ-железо, ограниченного интервалом между критическими точками А1 и А3 на диаграмме, происходит перекристаллизация стали (при нагреве и контролируемом медленном охлаждении).

При перекристаллизации образуются новая зернистая структура стали. Механизм образования зерен по данным [7,с.118] состоит в появлении центров кристаллизации и их роста диффузионным путем. На число центров кристаллизации влияют:

Рейтинг@Mail.ru