bannerbannerbanner
полная версияFirst Book in Physiology and Hygiene

John Harvey Kellogg
First Book in Physiology and Hygiene

CHAPTER XIII

WHY AND HOW WE BREATHE

1. An Experiment.—Let us perform a little experiment. We must have a small bit of candle, a fruit jar, or a bottle with a large mouth, and a piece of wire about a foot long. Let us notice carefully what we are about to do and what happens.

2. We will fasten the candle to the end of the wire. Now we will light it, and next we will let it down to the bottom of the jar. Now place the cover on the top of the jar and wait the results. Soon the candle burns dimly and in a little time the light goes out altogether.

3. What do you think is the reason that the candle will not burn when shut up in a bottle? A candle uses air when it burns. If shut up in a small, tight place, it soon uses up so much air that it can burn no longer. Try the experiment again, and when the candle begins to burn dimly, take it out quickly. We see that at once the light burns bright again.

4. Suppose we shut the stove draught tight, what is the result? The fire will burn low, and after a time it will probably go out. Why is this? Evidently the stove needs air to make the wood or coal burn, just as the candle needs air to make it burn.

5. Animals Die without Air.—If you should shut up a mouse or any other small animal in a fruit-jar, its life would go out just as the light of the candle went out. The little animal would die in a short time. A child shut up in a close place would die from the same cause in a very little time. In fact, many children are dying every day for want of a sufficient supply of pure air.

6. Oxygen.—The reason why animals need air, and why the fire will not burn without it, is that the air contains oxygen, and it is the oxygen of the air which burns the wood or coal and produces heat. So it is the oxygen that burns in our bodies and keeps us warm.

7. When wood and coal are burned, heat is produced; but some parts of the fuel are not made into heat. While the fire burns, smoke escapes through the pipe or chimney; but a part of the fuel remains in the stove in the form of ashes. Smoke and ashes are the waste parts of the fuel.

8. Poison in the Breath.—The burning which takes place in our bodies produces something similar to the smoke and ashes produced by the fire in a stove. The smoke is called carbonic-acid gas,1 an invisible vapor, and escapes through the lungs. The ashes are various waste and poisonous matters which are formed in all parts of the body. These waste matters are carried out of the body through the skin, the kidneys, the liver, and other organs.

9. Another Experiment.—We cannot see the gas escape from our lungs, but we can make an experiment which will show us that it really does pass out. Get two drinking-glasses and a tube. A glass tube is best, but a straw will do very well. Put a little pure water into one glass and the same quantity of lime-water into the other glass. Now put one end of the tube into the mouth and place the other end in the pure water. Breathe through the tube a few times. Look at the water in the glass and see that no change has taken place. Now breathe through the lime-water in the same way. After breathing two or three times, you will notice that the lime-water begins to look milky. In a short time it becomes almost as white as milk. This is because the lime-water catches the carbonic-acid gas which escapes from our lungs with each breath, while the pure water does not.

10. Why we Breathe.—By this experiment we learn another reason why we breathe. We must breathe to get rid of the carbonic-acid gas, which is brought to the lungs by the blood to be exchanged for oxygen. There are two reasons then why we breathe: (a) to obtain oxygen; (b) to get rid of carbonic-acid gas.

11. How a Frog Breathes.—Did you ever see a frog breathe? If not, improve the first opportunity to do so. You will see that the frog has a very curious way of breathing. He comes to the top of the water, puts his nose out a little, and then drinks the air. You can watch his throat and see him swallowing the air, a mouthful at a time, just as you would drink water.

12. If you had a chance to see the inside of a frog you would find there a queer-shaped bag. This is his air-bag. This bag has a tube running up to the throat. When the frog comes to the surface of the water he fills this bag with air. Then he can dive down into the mud out of sight until he has used up the supply of air. When the air has been changed to carbonic-acid gas, he must come to the surface to empty his air-bag and drink it full again.

13. The Lungs.—We do not drink air as the frog does, but like the frog we have an air-bag in our bodies. Our air-bag has to be emptied and filled so often that we cannot live under water long at a time, as a frog does. We call this air-bag the lungs. We have learned before that the lungs are in the chest. We need so much air and have to change the air in our lungs so often that we would not have time to swallow it as a frog does. So nature has made for us a breathing apparatus of such a kind that we can work it like a pair of bellows. Let us now study our breathing-bellows and learn how they do their work.

14. The Windpipe and Air-tubes.—A large tube called the windpipe extends from the root of the tongue down the middle of the chest. The windpipe divides into two main branches, which subdivide again and again, until the finest branches are not larger than a sewing-needle. The branches are called bronchial tubes. At the end of each tube is a cluster of small cavities called air-cells. The air-tubes and air-cells are well shown on the following page.

15. The Voice-box.—If you will place the ends of your fingers upon your throat just above the breast-bone, you will feel the windpipe, and may notice the ridges upon it. These are rings of cartilage, a hard substance commonly called gristle. The purpose of these rings is to keep the windpipe open. Close under the chin you can find something which feels like a lump, and which moves up and down when you swallow.

AIR-TUBES AND AIR-CELLS.


This is a little box made of cartilage, called the voice-box, because by means of this curious little apparatus we are able to talk and sing. Two little white bands are stretched across the inside of the voice-box. When we speak, these bands vibrate just as do the strings of the piano. These bands are called the vocal cords.

16. The Epiglottis.—At the top of the voice-box is placed a curious trap-door which can be shut down so as to close the entrance to the air-passages of the lungs. This little door has a name rather hard to remember. It is called the epiglottis (ep-i-glot'-tis). The cover of the voice-box closes whenever we swallow anything. This keeps food or liquids from entering the air passages. If we eat or drink too fast the voice-box will not have time to close its little door and prevent our being choked. Persons have been choked to death by trying to swallow their food too fast. Do you not think this is a very wonderful door that can open and shut just when it should do so without our thinking anything about it?

17. The Nostrils and the Soft Palate.—The air finds its way to the lungs through the mouth or through the two openings in the nose called the nostrils. From each nostril, three small passages lead backward through the nose. At the back part of the nasal cavity the passages of the two sides of the nose come together in an open space, just behind the soft curtain which hangs down at the back part of the mouth. This curtain is called the soft palate. Through the opening behind this curtain the air passes down into the voice-box and then into the lungs.

18. The Pleura.—In the chest the air tubes and lung of each side are enclosed in a very thin covering, called the pleura. The cavity of the chest in which the lungs are suspended is also lined by the pleura. A limpid fluid exudes from the pleura which keeps it moist, so that when the two surfaces rub together, as the lungs move, they do not become chafed and irritated.

19. Walls of the Chest.—The ribs form a part of the framework of the chest. The ribs are elastic. The spaces between them are filled up with muscles, some of which draw the ribs together, while others draw them apart. Can you tell any reason why the walls of the chest are elastic? The lower wall or floor of the chest cavity is formed by a muscle called the diaphragm, which divides the trunk into two cavities, the chest and the abdomen.

20. How we Use the Lungs.—Now let us notice how we use the lungs and what takes place in them. When we use a pair of bellows, we take hold of the handles and draw them apart. The sides of the bellows are drawn apart so that there is more room between the sides. The air then rushes in to fill the space. When the bellows are full, we press the handles together and the air is forced out.

21. It is in just this way that we breathe. When we are about to take a long breath, the muscles pull upon the sides of the chest in such a way as to draw them apart. At the same time the diaphragm draws itself downward. By these means, the cavity of the chest is made larger and air rushes in through the nose or mouth to fill the space. When the muscles stop pulling, the walls of the chest fall back again to their usual position and the diaphragm rises. The cavity of the chest then becomes smaller and the air is forced out through the nose or mouth. This process is repeated every time we breathe.

 

22. We breathe once for each four heart-beats. Small children breathe more rapidly than grown persons. We usually breathe about eighteen or twenty times in a minute.

23. How Much the Lungs Hold.—Every time we breathe, we take into our lungs about two thirds of a pint of air and breathe out the same quantity. Our lungs hold, however, very much more than this amount. A man, after he has taken a full breath, can breathe out a gallon of air, or more than ten times the usual amount. After he has breathed out all he can, there is still almost half a gallon of air in his lungs which he cannot breathe out. So you see the lungs hold almost a gallon and a half of air.

24. Do you think you can tell why Nature has given us so much more room in the lungs than we ordinarily use in breathing? If you will run up and down stairs three or four times you will see why we need this extra lung-room. It is because when we exercise vigorously the heart works very much faster and beats harder, and we must breathe much faster and fuller to enable the lungs to purify the blood as fast as the heart pumps it into them.

25. The Two Breaths.—We have learned that the air which we breathe out contains something which is not found in the air which we breathe in. This is carbonic-acid gas. How many of you remember how we found this out? We can also tell this in another way. If we put a candle down in a wide jar it will burn for some time. If we breathe into the jar first, however, the candle will go out as soon as we put it into the jar. This shows that the air which we breathe out contains something which will put a candle out. This is carbonic-acid gas, which is a poison and will destroy life.

26. Other Poisons.—The air which we breathe out also contains other invisible poisons which are very much worse than the carbonic-acid gas. These poisons make the air of a crowded or unventilated room smell very unpleasant to one who has just come in from the fresh air. Such air is unfit to breathe.

27. The Lungs Purify the Blood.—We have learned that the blood becomes dark in its journey through the body. This is because it loses its oxygen and receives carbonic-acid gas. While passing through the capillaries of the lungs, the blood gives out the carbonic-acid gas which it has gathered up in the tissues, and takes up a new supply of oxygen, which restores its scarlet hue.

28. How the Air is Purified.—Perhaps it occurs to you that with so many people and animals breathing all the while, the air would after a time become so filled with carbonic-acid gas that it would be unfit to breathe. This is prevented by a wonderful arrangement of Nature. The carbonic-acid gas which is so poisonous to us is one of the most necessary foods for plants. Plants take in carbonic-acid gas through their leaves, and send the oxygen back into the air ready for us to use again.

29. We have already learned that the oxygen taken in by the lungs is carried to the various parts of the body by the little blood corpuscles. The effect of strong liquors is to injure these corpuscles so that they cannot carry so much oxygen as they ought to do. For this reason, the blood of a drunkard is darker in color than that of a temperate person, and contains more carbonic-acid gas. The drunkard's lungs may supply all the air he needs, but his blood has been so damaged that he cannot use it. Excessive smoking has a similar effect.

SUMMARY

1. Our bodies need air, just as a candle or a fire does.

2. A small animal shut up in a close jar soon dies for want of air. We need the oxygen which the air contains.

3. Oxygen causes a sort of burning in our bodies.

4. The burning in our bodies keeps us warm, and destroys some of the waste matters.

5. The breathing organs are the windpipe and bronchial tubes, the voice-box, the epiglottis, the nostrils, the soft palate, the lungs, the air-cells, the pleura, the diaphragm, and the chest walls.

6. When we breathe we use our lungs like a pair of bellows.

7. A man's lungs hold nearly one and a half gallons of air.

8. In ordinary breathing we use less than a pint of air, but when necessary we can use much more.

9. The air we breathe out contains carbonic-acid gas and another invisible poison.

10. A candle will not burn in air which has been breathed, and animals die when confined in such air.

11. The lungs purify the blood. While passing through the lungs, the color of the blood changes from purple to bright red.

12. Plants purify the air by removing the carbonic-acid gas.

13. Alcohol and tobacco injure the blood corpuscles so that they cannot take up the oxygen from the air which the lungs receive.

CHAPTER XIV

HOW TO KEEP THE LUNGS HEALTHY

1. Pure Air Necessary.—A person may go without eating for a month, or without drinking for several days, and still live; but a strong man will die in a few moments if deprived of air. It is very important that we breathe plenty of pure air. There are many ways in which the air becomes impure.

2. Bad Odors.—Anything which rots or decays will in so doing produce an unpleasant odor. Bad odors produced in this way are very harmful and likely to make us sick. Many people have rotting potatoes and other vegetables in their cellars, and swill barrels, and heaps of refuse in their back yards. These are all dangerous to health, and often give rise to very serious disease. We should always remember that bad odors caused by decaying substances are signs of danger to health and life, and that these substances should be removed from us, or we should get away from them, as soon as possible.

3. Germs.—The chief reason why bad odors are dangerous is that they almost always have with them little living things called germs. Germs are so small that they cannot be seen by the naked eye: it takes a strong microscope to enable us to see them, but they are so powerful to do harm that if we receive them into our bodies they are likely to make us very sick, and they often cause death.

4. Contagious Diseases.—You have heard about diphtheria and scarlet fever and measles, and other "catching diseases." When a person is sick with one of these diseases, the air about him is poisoned with germs or something similar, which may give the same disease to other persons who inhale it. So when a person is sick from one of these diseases, it is very important that he should be put in a room by himself and shut away from every one but the doctor and the nurse. It is also necessary that all the clothing and bedding used by the sick person, and everything in the room, as well as the room itself, should be carefully cleansed and disinfected when the person has recovered, so as to wipe out every trace of the disease. The writer has known many cases in which persons who have been sick with some of these diseases were careless and gave the disease to others who died of it, although they themselves recovered. Do you not think it very wrong for a person to give to another through carelessness a disease which may cause his death?

5. Unhealthful vapors and odors of various sorts arise from cisterns and damp, close places under a house. Rooms which are shaded and shut up so closely that fresh air and sunshine seldom get into them should be avoided as dangerous to health.

6. Breath-Poisoned Air.—The most dangerous of all the poisons to which we are exposed through the air are those of the breath, of which we learned in a preceding lesson. We need plenty of fresh air to take the place of the air which we poison by our breath. Every time we breathe, we spoil at least half a barrelful of air. We breathe twenty times a minute, and hence spoil ten barrels of air in one minute. How many barrels would this make in one hour? We need an equal quantity of pure air to take the place of the spoiled air, or not less than ten barrels every minute, or six hundred barrels every hour.

7. Ventilation.—The only way to obtain the amount of fresh air needed, when we are shut up in-doors, is to have some means provided by which the fresh air shall be brought in and the old and impure air carried out. Changing the air by such means is called ventilation. Every house, and especially every sleeping-room, should be well ventilated. School-houses, churches, and other places where many people gather, need perfect ventilation. Ask your teacher to show you how the school-room is ventilated; and when you go home, talk to your parents about the ventilation of the house in which you live.

8. Many people ventilate their houses by opening the doors and windows. This is a very good way of ventilating a house in warm weather, but is a very poor way in cold weather, as it causes cold draughts, and makes the floor cold, so that it is difficult to keep the feet warm. It is much better to have the air warmed by a furnace or some similar means, before it enters the rooms. There ought also to be in each room a register to take the foul air out, so that it will not be necessary to open the windows. This register should be placed at the floor, because when the pure air enters the room warm, it first rises to the upper part of the room, and then as it cools and at the same time becomes impure, it settles to the floor, where it should be taken out by the register.

9. How to Breathe.—We should always take pains to expand the lungs well in breathing, and to use the entire chest, both the upper and the lower part. Clothing should be worn in such a way that every portion of the chest can be expanded. For this reason it is very wrong to wear the clothing tight about the waist. Clothing so worn is likely to cause the lungs to become diseased.

10. Bad Habits.—Students are very apt to make themselves flat-chested and round-shouldered by leaning over their desks while writing or studying. This is very harmful. We should always use great care to sit erect and to draw the shoulders well back. Then, if we take pains to fill the lungs well a great many times every day, we shall form the habit of expanding the lungs, and shall breathe deeper, even when we are not thinking about doing so.

11. Breathing through the Nose.—In breathing, we should always take care to draw the air in through the nose, and not through the mouth. The nose acts as a strainer, to remove particles of dust which might do harm if allowed to enter the lungs. It also warms and moistens the air in cold weather. The habit of breathing through the mouth often gives rise to serious disease of the throat and lungs.

12. Effects of Alcohol and Tobacco upon the Lungs.—Both alcohol and tobacco produce disease of the breathing organs. Smoking injures the throat and sometimes causes loss of smell. Serious and even fatal diseases of the lungs are often caused by alcohol.

13. Many people suppose that the use of alcohol will save a man from consumption. This is not true. A man may become a drunkard by the use of alcohol, and yet he is more likely to have consumption than he would have been if he had been a total abstainer. "Drunkard's consumption" is one of the most dreadful forms of this disease.

SUMMARY

1. Pure air is as necessary as food and drink.

2. Anything which is rotting or undergoing decay causes a bad odor, and thus makes the air impure.

3. Foul air contains germs which cause disease and often death.

4. Persons sick with "catching" diseases should be carefully avoided. Such persons should be shut away from those who are well, and their rooms and clothing should be carefully cleansed and disinfected.

5. The breath poisons the air about us. Each breath spoils half a barrelful of air.

6. We should change the air in our houses, or ventilate them, so that we may always have pure air.

7. We should always keep the body erect, and expand the lungs well in breathing.

8. The clothing about the chest and waist should be loose, so that the lungs may have room to expand.

9. Always breathe through the nose.

10. Tobacco causes disease of the throat and nose.

11. Alcohol causes consumption and other diseases of the lungs.

1More properly Carbonic dioxid.
Рейтинг@Mail.ru