bannerbannerbanner
полная версияЭнциклопедия будущего

Иван Сирфидов
Энциклопедия будущего

Полная версия

Диверсионные животные

Диверсионные GM-животные – это особый неофициальный класс GM-существ, по многим параметрам очень близкий к трансморфированному. Главная его особенность пожалуй заключена именно в его неофициальности – в том, что он не имеет официально определяющей его характеристики документации, спецификации, сертификационных параметров. Спросите у любого работающего в сфере контроля гражданских биотехнологий имперского чиновника существуют ли диверсионные GM-животные, всякий ответит «нет», и будет прав, потому что в гражданском правовом поле их точно нет. Они есть в сфере военных биотехнологий – это раз, и так же криминальных – это два. Криминальный и военный диверсионный организмы радикально отличаются друг от друга. Военный почти совершенство, создан на самом высшем биоинженерном уровне, выверенный, надёжный, многократно испытанный – в армии всегда и ко всему подходят очень ответственно, к тому же в спонсорах здесь никто иной как государство – наимогущественнейшее финансовое учреждение в мире. Криминальный в плане надёжности несопоставимо уступает военному, в плане рабочих качеств – тут всё менее однозначно, качества зависят от технических и материальных возможностей создателей GM-твари, а таковыми могут выступать очень разные по величине фигуры, от мегакорпораций с их неограниченными финансовыми и научно-техническими ресурсами до самых мелких деловых компаний, от крупных мафиозных кланов и террористической организации до малюсеньких преступных объединений, соответственно между продуктами их преступной биоинженерной деятельности разница будет бесконечной. В принципе вполне способен породить на свет что-то GM-диверсионное даже и некий биоинженер-одиночка, от злобности ли характера или из хулиганских побуждений, правда потенциал опасности и разрушительной силы его творения вряд ли будет велик, находясь в прямой зависимости от его профессионализма, таланта, уровня интеллекта и оснащённости высокотехнологичным оборудованием (типичный биохулиган – это студент, имеющий доступ к инструментарию лаборатории учебного заведения, как примеры можно привести созданную одним таким шутником кровососущую бабочку, а другим – муху, целенаправленно гадящую матовой непрозрачной клейкой жидкостью на объективы видеоустройств – камер наблюдения и т.д.). Кем бы ни были произведёны GM-диверсанты – военными, корпорацией или студентом, всем им несмотря на фактическое отсутствие ограничений на модификацию генома свойственна определённая модификационная скупость. Во всяком случае, в параметрах внешнего вида. Выглядят они как правило совершенно ординарно. Типичное диверсионное GM-животное, это деклассированный трансморф, оно тоже создаётся на базе природной твари, разница лишь в том, что у обычного трансморфа нервная система никогда не бывает изменена, у диверсанта же она либо сама подвергается изменениям той или иной степени, либо надстраивается дополнительной упрощённой системой управления, вторым доминантным мозгом, включающимся только в определённые моменты, в определённых ситуациях или при определённых условиях – получается нечто вроде животного и биоробота в одном лице. Хотя бывают и исключения. Та же «кровососущая бабочка» – это чистый трансморф москита, то есть существо с неизменённой нервной системой москита в теле бабочки, у которой изменены всего лишь ротовой аппарат и органы пищеварения.

Одна из наиболее важных характеристик диверсионных GM-животных – способность к гипер репродуктивности. Тех из них, кто ей обладает, относят к замедленному или немедленному типу, если же у них её нет, они считаются оперативным типом. Замедленность в данном случае преимущество, а не недостаток, именно она придаёт существу ударной мощи. Замедленный диверсант активирует своё диверсионное поведение не сразу, поначалу он живёт в природе подобно обычным натуральным тварям, с той лишь разницей, что вся его деятельность в это время направлена на скрытное взрывное увеличение собственной популяции. Он размножается и размножается, его личинки или детёныши растут ускоренными темпами, у насекомых видов буквально за дни вырастая до взрослого половозрелого состояния, и тоже все свои силы направляют на производство потомства, и лишь когда популяция достигнет некоего пикового значения, она прекращает размножаться, переходя к «основному блюду» – собственно к осуществлению диверсионной акции. Много ли толку создать одну «гадящую на камеры слежения» муху? Сколько камер она испортит, прежде чем её слопает какой-нибудь воробей? Кто это заметит? Никто. А если она расплодилась до миллиардов особей и все они разом хлынули в близлежащий город? Хаоса может и не начнётся, но жизнь людей заметно и очень странным для них образом изменится. Что касается немедленных GM-диверсантов, они тоже подразумевают определённую массовость, тоже прекрасно плодятся, однако в природе жить не рассчитаны, у них диверсионное поведение активно всегда, то есть их надо сначала развести и потом уже выпускать. Поэтому гигантскую популяцию в миллиарды существ с их помощью получить трудно, ведь её нужно будет где-то содержать, пока она разрастается. Как правило их применяют либо для мелких акций, либо для приуроченных к чему-то. Или же делают более опасными и вредоносными, чтобы и малым числом нанести серьёзный ущерб.

У оперативных GM-животных свои преимущества. Это орудие направленного действия, оно не ищет жертву наобум, на кого бог пошлёт, ему всегда заданны чётко выверенные объекты или области для точечного удара. Простой немного утрированный пример: вы биоинженер, достаточно талантливый, чтобы изготовить диверсионное существо, и достаточно обиженный на начальника или тёщу, чтобы реализовать свой талант на практике. Добываете образец запаха объекта ненависти, создаёте очень злого шмеля, для которого этот запах, как красная тряпка для быка, ну и выпускаете указанное насекомое метров за сто-двести от объекта. Через минуту, или десять, или даже пару дней – если ветер был не в ту сторону, но с большой долей вероятности вы услышите громкий вопль и сразу после поток бранных слов, исторгаемых знакомым голосом. В общем, как написано в одном из современных учебных пособий по безопасности: «…если вас ужалило насекомое, никогда не торопитесь его раздавить. Лучше изловите его и отнесите на экспертизу. Кто знает, вдруг у вас появился подкованный в биотехнологиях тайный недоброжелатель». А ведь насекомое может быть и смертельно ядовитым. Чем не идеальное орудие убийства? Здесь мы сразу оговоримся, серьёзные преступления с применением GM-существ ныне всё же скорее экзотика. Спроектировать и создать существо-инструмент очень непросто, тут нужны и высокая квалификация, и сложное оборудование. Этого не сделать на кухне с помощью пинцета и ножниц по самоучителю. Если же вы биоинженер и ваш знакомый умирает от смертельного укуса, следственные органы уж наверное смогут сложить два плюс два. А далее всё будет делом техники, один допрос, и полицейские детекторы правды не оставят вам ни шанса (см. раздел о детекторах правды). В принципе велика вероятность, что правоохранители обратят на вас внимание даже ещё до того, как вы совершите злодеяние. Какая-нибудь автоматическая аналитическая система заметит странный характер ваших поисковых запросов и вскоре вас посетит личность в погонах, озадачив интересными вопросами вроде: «а зачем это вы, батенька био специалист, ищете формулы сильнейших органических ядов? Уж не крыс ли травить собрались?» По идее криминальные приспособления всегда есть на чёрном рынке – если связан с преступным миром, без труда сыщешь где купить. Но вот с именно с биологическими орудиями для убийств дела обстоят не столь гладко. Спецслужбы империи чрезвычайно ретиво борются с их распространением, именно в силу их высокой опасности, ведь они живые, их можно разводить. Так что приобрести их крайне тяжело, почти нереально для простого незаконопослушного гражданина.

В целом диверсионный животные не есть рядовой элемент повседневности обывателя. Хотя и чем-то исключительно редким их не назовёшь. Для полицейских структур и службы имперской безопасности они вполне привычная рутинная часть будней. Наиболее распространены оперативные их виды, имеющие достаточно невинный, а иногда и откровенно шуточный характер диверсионного действия – назойливо крутиться вокруг и жужжать, залететь в рот как только жертва его открыла, героически нырнуть в вашу тарелку с супом и испустить там дух с целью испортить вам аппетит, максимум – болезненно ужалить владельца запаха, к которому их пару дней приучали. Таких можно приобрести на чёрном рынке, а некоторых шуточных и абсолютно легально на рынке обычном. Для убийств GM-диверсантов почти не применяют, криминал в массе своей всё же предпочитает им механических помощников – роботов. В теории для террористических организаций должны быть привлекательны замедленные диверсионные животные, как орудия для проведения масштабных террористических акций. Однако на практике это не так. Замедленные диверсанты намного сложнее в создании, их репродуктивное поведение необходимо подвергнуть неестественному изменению при слабых возможностях тестирования полученного результата в полевых условиях, кроме того требуется снабжать их дополнительными инстинктами, препятствующим возникновению их очаговых концентраций, они должны быть всегда рассредоточены, не собираться в стаи, быть максимально незаметными, чтобы избежать обнаружения и нейтрализации до проведения теракта. Модификация поведения сложнее, чем модификация тела живого существа. Биоинженер-террорист скорее выберет микробы, чем будет изобретать себе такую головную боль. Исключение – терроризм «официальный», сопровождающий масштабные боевые действия, применяемый как мера воздействия на войска противника или его гражданское население. Разработанные военными диверсионные животные могут быть очень изощрёнными.

Раздел 12. Антигравитационные технологии

Гравитационные технологии. Источники искажения гравитации (ИИГ)

Гравитационные технологии несомненно одно из наиболее значимых достижений цивилизации. Их можно назвать основополагающими – теми, что служат цивилизационным фундаментом, базисом для дальнейшего устойчивого развития человечества и процветания человека как вида. Они находят применение во множестве самых разнообразных областей деятельности, от медицины до производства оружия, от биоинженерии до металлургии, от спорта до управления климатом. Исключительным образом проявляют себя в сфере транспорта, став для неё буквально незаменимыми. Достаточно сказать, что принцип движения абсолютного большинства современных транспортных средств зиждется именно на них, на том, что они обеспечивают – антигравитации. И этому вряд ли стоит удивляться, ведь неотъемлемыми чертами антигравитационного средства передвижения являются способность к полёту, экономичность, безопасность, мгновенный разгон и мгновенное торможение при полном отсутствии перегрузок и чрезвычайно высокая скорость. Так что граждане боле не ездят на автомобилях (да и последних, собственно, давно уже нет). Они летают на аэромобилях – личных воздушных машинах. Они не пользуются автобусами и поездами, а садятся на аэробусы и орбитобусы – летающие аналоги автобуса, те домчат их до другого города или другого континента максимум за пару десятков минут. Мир полностью преобразился во всём, что касается передвижения по планете, стал несопоставимо комфортней, проще и экспрессивнее, и это непосредственная заслуга гравитационных технологий. Но главное их достоинство, то самое основополагающее, наделяющее людей особыми особенно широкими и знаменательными возможностями, всё-таки в ином. В передвижении по космосу. Только благодаря антигравитации люди могут странствовать меж звёзд посредством звездолётов – сверхсветовых космических судов, потому что без антигравитации сверхсветовые скорости недостижимы (во всяком случае, по мнению современной науки). На досветовых скоростях путешествия к другим звёздным системам занимали бы десятки и сотни лет, тогда как в настоящее описываемому время на это уходят всего лишь дни или недели. Столь малые сроки перелёта позволяют человечеству осваивать и обживать новые планеты, наращивать популяцию, развиваться и разрастаться, не загонять себя в рамки жесточайших демографических и ресурсных ограничений, избавляют от перспектив перенаселённости, жертвования природой и экологией ради лишнего дополнительного клочка жизненного пространства, и в конечном счёте дарят надежду на будущее как нынешним так и грядущим поколениям. Не даром трио древних учёных, совместно совершивших концептуальный прорыв в понимании гравитационных основ вселенной, высоко почитаемо в империи наравне с самыми величайшими историческими персонами, их имена стоят в одном ряду с Эйнштейном и Дарвином, есть в каждом учебнике и известны всякому. Они создатели новой эпохи, во многом сделавшие этот мир таким, какой он есть сейчас. Не будь их, не будь изобретены, опираясь на их гениальную теорию, другими учёными методы получения антигравитации, люди так и прозябали бы в границах своей солнечной системы, запертые в тесном мирке из трёх планет – Земли, Венеры, Марса, – покоряя просторы космоса лишь в мечтах.

 

В классификации по утилитарному назначению гравитационные технологии – это технологии, служащие для изменения характера гравитационного взаимодействия системы тел. Обыватель в массе своей думает о таком изменении как об уменьшении, то есть для него оно ни что иное как антигравитация. В действительности же оно осуществимо и в ту и в другую сторону, массу посредством гравитационных технологий можно не только снижать, но и наращивать, гравитационное взаимодействие не только ослаблять, но и усиливать, и в плане практической значимости усиление-наращивание тоже крайне важно. Достаточно вспомнить о местах с неудовлетворительными гравитационными условиями – о естественных спутниках планет, или о планетах с малой массой (из таких обжита только одна – Марс), или о космических станциях и космических кораблях. Именно за счёт усиления гравитационного взаимодействия жизненное пространство в них утяжеляется, приводится к гравитационно удовлетворительному. Другими словами, на Марсе или Луне в элитном жилье и различных общественно востребованных местах не сложно найти помещения, снабжённые нормализующим силу притяжения гравитационным оборудованием, а на космической станции или космическом корабле не бывает невесомости, потому что согласно техническому регламенту указанным оборудованием они обязаны быть оснащены. Осталось только упомянуть, и обычный планетарный транспорт – аэробусы и аэромобили, будучи антигравитационным, без нормализации притяжения внутри салона вынуждал бы своих пассажиров постоянно чувствовать себя лишёнными веса. Отсюда становится очевидно, что наряду с системами антигравитации так же и усиливающие массу и гравитационные взаимодействия технические системы весьма распространены и массово востребованы.

Основой всякого гравитационного технического оборудования служит так называемый «ИИГ» (Источник Искажения Гравитации). ИИГ – в современной терминологии это любое устройство, способное изменять либо массу какой-либо системы тел, либо силу гравитационного взаимодействия этой системы с прочими телами вселенной и/или тел внутри этой системы друг с другом. Существует несколько принципиально разных гравитационных технологий, на базе которых производятся ИИГ. К наиболее значимым из них относят «экранную антигравитацию», «проекционную антигравитацию», «объёмную антигравитацию» и «генерацию виртуальной массы». Описание каждой из них вы найдёте ниже. Применение ИИГ относительно непростая инженерно-техническая задача, по причине прежде всего изменения кинетических и физических свойств гравитационно преобразованной материи, подробней об этом вы так же узнаете ниже. Интересно отметить, что при использовании антигравитационного оборудования традиционные законы сохранения энергии утрачивают силу. На поддержание антигравитации и перемещение лишённого массы тела энергии требуется заметно меньше, чем на перемещение того же тела под полной массой. К примеру, если антигравитационный летательный аппарат взлетит в воздух и отключит антигравитацию, его потенциальная энергия станет существенно большей, чем энергия, суммарно затраченная на взлёт. Считается, что при изменении характера гравитационных отношений в замкнутой системе тел она (эта система) перестаёт быть замкнутой. Пока гравитационные условия одни и те же и для планеты и для летательного аппарата, система «планета-аппарат» в гравитационном смысле замкнута, т.е. изолирована, позволяет нам не учитывать влияние на неё всей остальной вселенной, так как та прикладывает к её элементам одинаковый потенциал гравитационного поля. Однако при антигравитационном воздействии на аппарат условия для него и планеты перестают быть равноценными, и рассматривать его только в паре с ней, а не в системе «аппарат-планета-вселенная» становится бессмысленно. При этом по сравнению с масштабом вселенной летательный аппарат и даже планета столь мизерные величины, что их можно попросту не принимать во внимание, да и попытайся мы их во внимание принять, всё равно не выйдет, они окажутся далеко за пределами погрешности вычислений. Иначе говоря, энергия системы «аппарат-планета-вселенная» приблизительно равна энергии вселенной, вследствие чего ни подтвердить ни опровергнуть расчётами закон сохранения энергии в рамках такой системы нельзя.

Гравитационные технологии называют так же «антигравитационными технологиями». Причин, почему это допустимо и вполне корректно, пожалуй несколько. Первая – потому что антигравитация всё-таки основная составляющая их назначения, именно она обеспечивает главные цивилизационные дивиденды гравитационных технологий в целом. Вторая – потому что даже при усилении массы антигравитация как таковая используется, она неотъемлемая часть усиления, без антигравитации никакое устойчивое усиление массы невозможно, подробней об этом вы узнаете из описания технологии генерации виртуальной массы. Ну и третья – потому что в конечном счёте все гравитационные технологии направлены против естественных законов гравитационного взаимодействия, на преодоление тех. Они устанавливают гравитационные анти-правила в пику к привычным наблюдаемым в природе.

Экранная антигравитация

Суть действия экранной антигравитации заключается в устранении взаимного влияния между гравитационным полем тела, массу которого требуется уменьшить, и гравитационными полями всех остальных тел вселенной (проще говоря, гравитационным полем вселенной). Достигается это путём помещения тела в так называемый «антигравитационный экран» – некую особую оболочку, способную экранировать гравитационные поля («экранировать» означает «служить препятствием», «не пропускать»). Данная оболочка формируется посредством генерации по всему периметру тела тонкой прослойки из антигравитационного поля, т.е. поля, основным свойством которого является ослабление гравитационных полей. Величина ослабления зависит от напряжённости антигравитационного поля – чем та выше, тем хуже гравитационные поля проходят сквозь него, а значит, тем менее «заметны» становятся масса вселенной и экранируемая масса друг для друга, тем меньшее влияние оказывают они друг на друга, иными словами, они начинают взаимодействовать так, словно стали легче во столько же раз, во сколько потеряло в силе гравитационное поле, хотя в действительности никакого уменьшения масс не происходит. При равенстве напряжённости антигравитационного поля и напряжённости гравитационного поля, создаваемого массой экранируемой системы тел, непроницаемость антигравитационного экрана для этой системы считается условно стопроцентной. Что означает, теоретически последняя должна становиться с позиций вселенной полностью невесомой. На практике вследствие неоднородности гравитационных полей некоторый незначительный вес (в физике его именуют «просачивающейся массой»), близкий к нулю, но не нулевой, у неё всё же остаётся. Безусловно стопроцентной непроницаемости экрана возможно достичь только если напряжённость антигравитационного поля намного превзойдёт напряжённость гравитационного поля экранируемой системы тел. Так или иначе современные технологии позволяют обеспечивать экранирование любой степени – и неполное и полное.

За свою основную особенность – уменьшать не саму массу, а лишь силу её взаимодействия с внешней средой – экранную антигравитацию называют относительной антигравитацией. И именно благодаря такому своему свойству она смогла стать действительно востребованной, смогла превратить антигравитационные технологии в инструмент большого практического значения. Дело в том, что реальное снижение массы имеет очень неприятные побочные эффекты. Как мы знаем, всякое тело состоит из атомов, а атомы в свою очередь из ещё более мелких элементов, из субатомных частиц. Сделав легче его, мы сделаем в соответствующих пропорциях легче и их все. А это приведёт к резкому изменению характера взаимодействий между ними: они начнут двигаться на более высоких скоростях, энергия их соударений многократно уменьшится, а степень магнитного взаимодействия между заряженными частицами, напротив, существенно возрастёт, и т.д. Как следствие, все физические свойства подвергшихся уменьшению массы тел и сред так же немедленно изменятся: температура, прочность, плотность, пластичность, теплопроводность, электропроводность, химическая активность, характер химических взаимодействий, вязкость, температуры смены агрегатных состояний, и всё прочее – все мгновенно станут радикально иными. Вот почему отсутствие реального уменьшения массы у экранной антигравитации позиционируется как исключительно важное её достоинство. В частности оно означает, что ни у человеческого тела, ни у технических устройств и деталей корпуса летательного аппарата физические свойства под её воздействием не претерпят никаких изменений, что гарантирует людям сохранение полной жизнеспособности, а машинам полной работоспособности. При этом, несмотря на свою относительность, экранная антигравитация нисколько не утрачивает характерных для антигравитации полезных рабочих качеств. Для всякого тела внутри антигравитационного экрана его сопротивление изменению своей кинетической энергии относительно внешнего пространства уменьшается прямо пропорционально понижению его массы относительно того же пространства. Таким образом, любой летательный аппарат, укрытый за экраном и имеющий относительно внешней вселенной массу, близкую к нулевой, практически не обладает инерцией, т.е. способен мгновенно разгоняться до гигантских скоростей и мгновенно останавливаться, затрачивая на перемещение минимум энергии и испытывая совершенно микроскопические перегрузки, в численном выражении тоже стремящиеся к нулю (скажем, от десятых долей G до миллионных и менее, в зависимости от качества и эффективности антигравитационного оборудования). Вследствие относительности не для всех сфер деятельности, требующих снижения массы, экранная антигравитация пригодна, но как основа двигательных систем антигравитационного транспорта она, можно сказать, идеальна.

 

Недостатком экранной антигравитации прежде всего считают некомпактность. Сам генератор антигравитационного поля всегда довольно внушительный по размерам агрегат, к тому же для него требуется источник энергии значительной мощности, который вкупе с навешанными на него системами защиты и элементами энергетической разводки так же имеет немалые габариты. Минимальный объём, который они совместно занимают, фактически не может составлять менее полутора метров кубических. Поэтому на базе данного вида антигравитации нельзя создавать миниатюрные транспортные средства. Вторым из основных недостатков является необходимость обеспечить наличие прослойки антигравитационного поля по всей поверхности подвергающегося антигравитации тела. Технологий, как это сделать, существует достаточно много, к примеру для воздушного транспорта преимущественно используют напыление из специального сверх высокотехнологичного материла – его наносят на внешнюю строну корпусов аэромашин, неизменное требование к нему – полная прозрачность, чтобы под ним был виден окрас машины, толщина его не принципиальна и в областях где нет нужды в излишней ударопрочности и износостойкости зачастую составляет буквально одну молекулу. Антигравитация возбуждается непосредственно в самом напылении. Альтернативные технологии – покраска составами со сходными напылению свойствами, изготовление внешнего слоя корпуса из специальных материалов, насыщение поверхностного слоя корпуса особыми молекулами или наночастицами, закладка в подповерхностный слой сети проводников антигравитации, и т.д. Факт в том, что какова бы ни была технология, она так или иначе всегда крайне дорогостоящая и всегда существенно сказывается на конечной стоимости летательного аппарата. Только представьте себе структурную сложность антигравитационного покрытия – хотя бы той же антигравитационной краски. Она должна обладать всеми качествами красящей субстанции для аэромашин – не выцветать, выдерживать перепады давления, температур, высокую и низкую влажность, быть неподверженной оледенению, иметь повышенную прочность, чтобы не слезать и не повреждаться при контактах с внешними предметами (большинство антигравитационных летательных аппаратов не имеют ни шасси, ни посадочных стоек, садятся они всегда на брюхо, признаем правда, что у многих из них всё же есть небольшие посадочные контактные выступы, и те всегда в плане стойкости антигравитационного покрытия значительно отличаются от всего остального корпуса), должна обладать так же всеми качествами материала для возбуждения антигравитационного поля, и все эти свои многочисленные рабочие свойства обязана сохранять неизменными под воздействием антигравитации – ведь вещество экрана как раз то единственное, что подвергается ей и всем сопутствующим изменению массы отрицательным эффектам. Необходимость в экранной прослойке кроме стоимости и сложности подразумевает и ещё одно обстоятельство – посредством экранной антигравитации нельзя создавать открытые антигравитационные системы – не бывает экранных аэромашин «без верха», экран формируется в физическом теле, в предмете, в материале, на пустом месте его не организуешь. Известно, что проводились эксперименты по формированию экрана в лучах ленточных лазеров (ленточный лазер испускает не отдельный луч, а широкую плоскость из лучей – то же самое, как если много обычных лазеров установить параллельно корпус к корпусу вплотную друг к другу и включить, дабы объединить их в нечто вроде плоской широкой световой ленты). Но прикладного применения данная технология не нашла.

Третьим недостатком экранной антигравитации называют высокое энергопотребление. Формирующий её ИИГ вынужден непрерывно расходовать на её поддержание энергию, пропорциональную величине уменьшаемой массы, и у экранных ИИГ оные расходы выше всего. Они безусловно меньше, чем потребовалось бы энергетических затрат при реактивных или воздушно-винтовых способах движения, иначе антигравитация наверное имела бы мало практического смысла (тут правда следует ещё учесть, что ИИГ питается электроэнергией, получаемой как правило от бортового мини-реактора, тогда как реактивные самолёты древности вынуждены были таскать с собой топливо, масса которого могла исчисляться и десятками тонн, и даже сотнями – шокирующие цифры для любого авиаинженера современности). И всё же они достаточно велики. Особенно заметной проблема энергопотребления становится на дорогих или высокоскоростных летательных аппаратах, где необходимо эффективно подавлять и «просачивающуюся массу» тоже. В этом случае энергозатраты возрастают как минимум в несколько раз. Для их уменьшения источники антигравитации некоторых аэромашин работают в «высокочастотном импульсном режиме», при котором часть времени (например, 0,0005 секунды каждые 0,001 секунды) генерируется антигравитационное поле полной мощности, а остальное время пониженной. Это позволяет сократить потребляемую генератором энергию на величины от нескольких до 50-80 процентов в зависимости от амплитуды импульсов, особенностей гравитационного оборудования машины и условий его эксплуатации. Наиболее существенную экономию энергии импульсный режим даёт если подавление «просачивающейся массы» происходит не постоянно, а только на пике импульсов.

На недорогих летательных аппаратах для их удешевления часто применяют упрощённый вид антигравитационного экранирования – поляризованное экранирование, т.е. производимое посредством поляризованного антигравитационного поля. Последнее действует только в одну сторону, оно позволяет собственному гравитационному полю аэромашины свободно выходить наружу, но не позволяет внешним гравитационным полям попадать внутрь. Подобный принцип экранирования тоже вполне эффективен, хотя и уступает полноценному экрану, в частности, просачивающаяся масса здесь на порядки выше – но это всё равно лишь килограммы максимум. И если в летательном аппарате и не предполагалось эффективное подавление просачивающейся массы – например она нужна для нейтрализации выталкивающей силы (об эффекте выталкивания см. ниже), использование поляризации не только удешевляет стоимость гравитационного оборудования, но и в несколько раз снижает его энергопотребление, благодаря чему становится возможным так же упростить энергетическую установку, уменьшить её габариты и мощность, что тоже положительно сказывается на цене.

Из достоинств экранной антигравитации отдельной строкой выделяют её высокую эксплуатационную безопасность. Будучи относительной, не снижая массу реально, она не подвергает жизни пользующихся ей никакому риску. Сбои в генерирующем её оборудовании гарантированно не причинят увечий или смерти. Так же она не травмоопасна для окружающих. Казалось бы, мы знаем, что экран из антигравитации находится снаружи всякой экранной летающей машины, обволакивает ту. А значит случайное соприкосновение с ней прохожих, когда она готовится к взлёту, наверное должно иметь для их здоровья какие-то негативные последствия. Ведь внутри экрана антигравитация далеко не относительна, она относительна лишь для того, что скрыто за ним. И вообще, каким образом антигравитационное поле не распространяется из экрана внутрь салона? Это же просто поле, а поля имеют обыкновение распространятся. Взять хотя бы гравитационное поле. Оно свободно проходит везде, ничто ему не помеха. Всё дело в очень необычных свойствах антигравитационных полей. Нормальное пространство чрезвычайно плохой проводник для них. Чтобы они могли в нём распространятся, фактически должны быть преобразованы характеристики самого пространства, так же должны быть сформированы особые физические, в частности электромагнитные, условия, несвойственные для естественной среды. Не даром антигравитация не наблюдается в природе, она продукт исключительно рукотворный. Непроходимость пространства и есть основная причина, почему антигравитационное поле столь легко локализуется, почему его относительно просто «запереть» в определённых границах, не дать ему выйти, скажем, за пределы экрана летательного аппарата. И именно у экранной антигравитации локализация реализуется проще и эффективнее всего. Как результат, у большинства из воздушных транспортных средств, имеющих экранное напыление на внешней стороне корпуса, антигравитационное поле отдаляется от краёв материала экрана буквально на микроскопичное расстояние, сопоставимое с размерами атомов. Вследствие чего совершенно не способно причинить вред ни тому что внутри аэромашин, ни тому что снаружи. Прикосновение к их покрытию ничем не грозит, вы просто не сможете настолько плотно прижать к нему руку, чтобы попасть под действие антигравитации. Хотя бы чуть-чуть, хотя бы отдельными участками поверхностного слоя кожи. Заметим, это вовсе не значит, что при желании нельзя обеспечить выход антигравитации глубоко за пределы материала экрана. Экранных технологий действительно много, иные из них позволяют даже регулировать дальность её выхода наружу, плавно изменяя по желанию от микрон до сантиметров и более. Для тех из воздушных транспортных средств, которым необходимо поддерживать сверхнизкую массу близкую к нулевой, расширенная дальность действия антигравитации крайне важна, она обеспечивает возможность лишать веса попавшие на корпус пыль и влагу, дабы избежать утяжеления. Правда эксплуатация подобного транспорта требует определённых мер предосторожности и соблюдения правил техники безопасности. Поэтому в быту для решения обычных транспортных задач его применение считается нецелесообразным.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131 
Рейтинг@Mail.ru