bannerbannerbanner
полная версияЭнциклопедия будущего

Иван Сирфидов
Энциклопедия будущего

Полная версия

Другие важные выводы, которые можно сделать, применяя АСО:

1) Лишь сама абсолютная система отсчёта может рассматриваться как инерциальная, все остальные системы, находящиеся внутри неё, таковыми не являются.

2) Расчёты положения и характеристик тел, движущихся с релятивистскими скоростями, в АСО можно производить только относительно АСО, попытки выполнять их для тел относительно друг друга будут неверны, бессмысленны, парадоксально противоречивы.

3) В отличие от отношений между телами, рассматриваемыми в ТО, отношения между АСО и телами в ней не являются равноправными. Она всегда неподвижна, они всегда движутся или покоятся относительно неё. Поэтому все релятивистские изменения принимают на себя именно тела. Замедление времени и рост импульса (т.е. релятивистской массы) должны рассматриваться исключительно в них относительно АСО, но не наоборот. Как пример, вспомним, что при движении космического путешественника время неизменно замедляется у него, а не у планеты, откуда он стартовал. То есть налицо неравноправие, подтверждаемое опытным путём.

4) Исключая замедление времени, прочие релятивистские эффекты сохраняют зависимость от направления вектора скорости. Длины сжимаются вдоль его (вектора) оси, импульс растёт так же вдоль него (часто говорят, у тела растёт масса, однако это неверно, масса вневекторная величина, растёт именно импульс, просто во всех плоскостях кроме плоскости, перпендикулярной оси движения, тело начинает вести себя как более массивное).

5) Релятивистское сокращение длин в АСО субъективно, связано с более сложными взаимоотношениями между движущимся телом и пространством. С позиций АСО никакого сокращения не происходит. Что в общем вполне соответствует классической ТО, ведь в ТО длины уменьшаются только для тела, у которого замедляется время, т.е. для одного из рассматриваемой пары движущихся относительно друг друга тел (здесь мы снова наблюдаем яркий пример очевидного неравноправия).

6) Как и в ТО, в АСО ничто не может двигаться быстрее 1С, однако в АСО максимальная скорость сближения или отдаления двух тел в пространстве равна 2C, а не 1С – такой скорости можно достичь, если тела летят соответственно друг к другу или друг от друга со скоростями 1С.

7) В АСО замедление времени связно с замедлением субатомных процессов и скорости распространения полей в направлении движения при релятивистских скоростях. Если все внутренние процессы в теле протекают медленнее вследствие более медленного перемещения и взаимодействия в нём элементарных частиц и более медленного распространения полей, оно само станет «замедленным», будет вести себя так, словно темп его времени снизился, станет медленнее «стареть». Самый тривиальный пример: допустим мы летим относительно АСО со скоростью 0,99999998С. Но мы это не просто мы, мы это наш организм. Который состоит из молекул. Те из атомов. Те в свою очередь из ещё более мелких величин. И чем мельче величина, тем быстрее она движется внутри нас. Скажем, электроны вращаются вокруг ядер атомов со скоростью, вполне сопоставимой с С. Для пущей наглядности примем её ровно за С. Тогда на участках траектории, где направление движения электрона совпадает с направлением движения всего тела, в нашем примере он станет перемещаться в 50 миллионов раз медленнее (1/(1С-0,99999998С) = 50000000). Правда на этих участках ещё и сжимается расстояние в 5000 раз, потому реально его скорость упадёт на них всего в 10000 раз. Но это тоже немало. Согласно же ТО время на скорости в 0,99999998С должно замедлиться в 5000 раз. И одно другому нисколько не противоречит, если вспомнить, что половину пути при вращении электрон будет совершать в обратном движению направлении – т.е. совсем не замедляясь. В современной физике есть целое отдельное направление, изучающее исключительно вопросы корпускулярного релятивизма макрообъектов. Это важно, летая по космосу на субсветовых скоростях надо знать, чем подобные путешествия чреваты для здоровья человека. Вроде бы принцип относительности гарантирует, что ничем плохим. Но раз время замедляется, это точно указывает на не относительный характер внутренних релятивистских корпускулярных процессов. Главной проблемой учёные обозначают неоднородность течения времени у частиц тела в зависимости от их текущего направления перемещения. В макрообъекте, состоящем из множества элементарных частиц, замедление времени в целом усредняется из-за хаотичной разнонаправленности их движения в нём, однако в структурированных объектах, имеющих отдельные продольные расположенные в одной оси с направлением вектора скорости внутренние элементы, замедление функций этих элементов будет иметь выраженную зависимость от направления распространения по ним полей или прохождения вещества. Например, при осуществлении радиосвязи внутри космического корабля быстрота передачи сигнала между двумя челнами экипажа, один из которых находится в кормовой части, а другой в носовой, окажется неодинаковой, до кормового служащего электромагнитные волны с носа будут доходить со скоростью света, а до носового на скорости, равной разнице между С и скоростью корабля (с поправкой на сжатие расстояний). То же и с процессами жизнедеятельности, протекающими внутри живых организмов. При совпадении направления распространения электрохимического сигнала по нервам с направлением движения космолёта, на этих участках нервов нервные импульсы будут замедляться. Это называют релятивистской функциональной асимметрией. Благо, в настоящее описываемому время максимальные скорости космического транспорта не превышают 0,98С, разница между С и 0,98С равна 0,02С или 6000 км/с, что с учётом релятивистского сжатия расстояний превращается во все 30000 км/с, то есть скорость процессов организма и распространения сигналов остаётся достаточно высокой даже при функциональной асимметрии, и значит последняя не является препятствиям для жизнедеятельности человека или работы электронных систем судна. Асимметрия присутствует при распространении любой информации, в том числе визуальной (видимой), ведь та тоже передаётся посредством движения – с помощью движущихся элементарных частиц – фотонов. Наблюдаемая внутри космолёта картина будет выглядеть нормально лишь при взгляде перпендикулярно оси движения, во всех остальных направлениях её спектр и яркость станут изменяться в зависимости от угла зрения, кроме того носовая часть будет немного ускоряться при измени угла обзора (повороте головы в её сторону), а носовая соответственно замедляться. Хотя при 0,98С и с учётом собственной замедленности восприятия во времени экипаж практически не заметит никакой визуальной асимметрии.

Пункт 2 позволяет нам наконец разрешить загадку с планетолётами и стрельбой. Нам всего лишь надо знать, с какой скоростью движутся корабли «А» и «Б» относительно АСО. Их скорость относительно наблюдателя нам ни о чём не говорит, кто знает, вдруг это он летит мимо них со скоростью 0,5С, а они стоят неподвижно. Согласно ТО время, за которое луч лазера пройдёт расстояние от корабля «А» до корабля «Б», не может относительно их самих быть иным, чем 2 секунды. Но в АСО всё иначе, в АСО она есть единственная реальность и все тела взаимодействуют по её законам. Если корабли всё же именно относительно неё движутся со скоростью 0,5С, значит взрыва не будет, так как лучу для преодоления расстояния между ними понадобится 4 секунды по времени АСО. А кажется экипажам кораблей, будто лучу хватило всего двух секунд, ну и что, это ничего не меняет, им так только кажется, это называется релятивистским искажением перспективы. То же относится и к наблюдателю. Что он там себе видит, совершенно неважно, он вообще всего лишь наблюдатель, а не участник события, будучи неподвижен относительно АСО он воспримет происходящее в правильном свете, в противном случае его перспектива будет искажена, вот и всё. Если вы поставите указательный палец на линии взгляда между глазами и луной, зрительно вам почудится, что палец касается луны. Релятивистское искажение перспективы чем-то похоже на это.

Ну и напоследок ещё один пример. Снова про корабли и лазер. Допустим с Земли стартуют два корабля с разницей во времени в 10 часов. Оба разгоняются до 10000 км/с и летят точно в одну сторону, один за другим. Далее с Земли в их направлении производится мощная лазерная вспышка. Заметив её, второй корабль обязан немедленно тоже произвести вспышку в направлении первого корабля. С позиций Земли первый корабль увидит обе вспышки одновременно, ведь свет распространяется в космосе с одинаковой скоростью. С позиций второго корабля согласно ТО нет, вспышка с Земли достигнет первого корабля позже, чем его вспышка, на ((10000*3600*10)\ 290 000) – ((10000*3600*10)\ 300 000) = 41 секунду. Потому что оба корабля неподвижны относительно друг друга, а от Земли удаляются на скорости 10000 км/с. Теперь представьте, что первый корабль, заметив вспышки, должен сообщить по радиосвязи время прихода каждой. Его сигнал будет одним и для Земли и для второго корабля. Вопрос, что же он передаст им, какую информацию? Ту, которая верна для Земли, или ту что верна для другого корабля? Иным словами, как только мы начинаем применять ТО не к двум, а к трём или более перемещающимся на разной скорости объектам, и между этими объектами предполагается взаимодействие в будущем, скажем переход в общую единую систему отсчёта или информационный обмен, ТО утрачивает практический смысл.

Бой в космосе

Понимание АСО во многом проливает свет на специфику боёв в космосе, под которыми мы подразумеваем схватку двух флотов или двух космических кораблей. Первая важная особенность – слабая видимость. Представьте простую ситуацию: вражеский космолёт с дистанции в миллион километров выстрелил по вам ракетой, летящей на скорости 0,98С. Вы не сможете никак ни заметить ни обнаружить её, пока она практически не долетит до вас, ведь и электромагнитные поля и фотоны, отражённые от её корпуса, достигнут вас примерно тогда же, когда и она сама. На преодоление дистанции в миллион километров у неё уйдёт примерно 3 секунды. Значит, у вас будет (1 – 0,98)*3 времени, чтобы засечь её и отреагировать на её подлёт. 0,06 секунды. 60 миллисекунд. За это время требуется успеть обнаружить ракету, определить, что она такое, и ещё и выполнить некое защитное действие: манёвр уклонения, заградительный огонь, наведение и отстрел защитного боеприпаса и т.п. А если дистанция меньше, всего 1000 километров? Или удар нанесён из лазерных пушек. Лазерный луч летит со скоростью света, заметить его, пока он не достиг вас, вообще невозможно. Против лазера в принципе нельзя принять никаких активных защитных контрмер. Вся надежда исключительно на статическую броню. Однако движутся со световыми и околосветовыми скоростями не только лазерные лучи и ракеты. Космические корабли и сами перемещаются столь же быстро. Поэтому замечательное изобретение человеческого инженерного гения – радары и дальномеры – в космическом бою практически бесполезны. Они могут служить лишь для навигации, но не для обнаружения противника. При расстояниях в тысячи и миллионы километров, пока твой луч радара дойдёт до вражеского корабля, пока отразится от его корпуса и вернётся обратно, тот уже и сам достигнет тебя с этим же лучом. Или его позиция успеет измениться кардинальным образом, он будет совсем не в том месте, где ты его видишь. От прочих видов наблюдения, не связанных с отражением посланных сигналов, таких как тепловое, электромагнитное излучение или гравитационные возмущения от космолётов, в условиях современного боя тоже мало проку. Ведь и фотоны, и электромагнитные волны, и гравитационные поля распространяются в пространстве со скоростью света. Когда и враг движется на скорости, близкой к световой, он всегда будет не там, где тебе кажется. Ты никогда не будешь толком знать, где он. Особенно если он перемещается непредсказуемым образом, постоянно меняя траекторию. Из раздела от транспорте вы уже знаете, что в описываемое время абсолютно все летающие транспортные средства используют антигравитационный принцип движения, а значит, могут останавливаться и разгоняться вплоть до субсветовых скоростей почти мгновенно и не испытывая никаких перегрузок. Иными словами, все они обладают сверхманёвренностью и не обладают инерцией. Включая естественно и военные суда. Последние способны легко изменять свои скорость и направление движения, и они постоянно это делают дабы воспрепятствовать возможности прицельного огня по себе. Вследствие чего рассчитать их будущее местоположение исходя из их текущей скорости нельзя в принципе. Если посмотреть на перемещения боевых кораблей во время сражения, это кажется симфонией группового безумия спятивших автопилотов. Вспомним теперь о размерах поля боя. Когда противоборствующие стороны воюют на скоростях, близких к С, преодолевая за секунды миллионы километров, оно соответствующе расширяется, достигая объёма этак в 500000000000000 км. кубических. Самое огромное судно в таком пространстве – иголка в стоге сена. Его почти невозможно обнаружить, чувствительность сенсоров и детекторов боевых кораблей эффективна лишь на десятках-сотнях тысяч километров, даже не на миллионах. Найти друг друга враждующим сторонам будет очень непросто. Но ежели и найдёшь, непонятно как нанести урон противнику, движущемуся с такой скоростью. Он просто улетит от любого воздействия. Миг, и он уже в тысячах километров от эпицентра взрыва ракеты, которая только что вроде бы в него попала. Скорость лазерного луча быстрее, чем у кораблей, но ведь те маневрируют, сколько энергии успеет передать лазер скользнув одно мгновенье, 1/300000000 долю секунды по их корпусу? К тому же у многих кораблей есть броня и средства защиты, даже прямое попадание может не причинить им никакого вреда. Вариантов нанести урон реально практически нет. Неуязвимость при маневрировании на субсветовой скорости – вторая особенность космического боя.

 

Таким образом приходим к выводам, что во-первых сражение в космосе между боевыми кораблями есть либо продукт непротивления обоих сторон вступить в него, либо результат невозможности для одной из них отступить, в силу, к примеру, защиты родной планеты. Захочет космолёт сбежать или уклониться от боя, он сделает это легко. Во-вторых же, в пространстве подобного объёма и на подобных скоростях бой почти бесперспективное занятие, его участники растратив все боеприпасы скорее всего так ни разу в друг друга и не попадут. Осталось лишь упомянуть, что запас энергии космических кораблей не безграничен, а от него напрямую зависит и дальность их полёта, и число возможных выстрелов из энергетической артиллерии. Отсюда становятся ясны основные варианты тактики космического боя. Всего их насчитывается восемь:

1) Линейный бой. Корабли сбрасывают скорость до околонулевой, сближаются и вступают в открытый обмен огневыми ударами без уклонения и маневрирования, надеясь лишь на броню, средства активной защиты и огневую мощь. Если их много, они выстраиваются в плоскость, сходятся стенка на стенку, потому такой бой и называют линейным по аналогии с морскими сражениями прошлого, когда корабли выстраивались в линию. При понимании стоимости боевых космолётов тактика открытого обмена ударами кажется чистым безумием, однако она позволяет решить всё за день, закончить войну одним махом – победой ли или поражением, все прочие тактики могут затянуть её на месяцы, а то и годы, посему ещё не известно, что более рентабельно. Когда-то даже существовало нечто вроде кодекса космического флота, в котором линейный бой заявлялся фактически как правило чести. Но честь и война мало совместимы, в конце концов эта тактика исчезала, в настоящий описываемому момент так не воюют. Линейные бронированные корабли – линкоры всё ещё используются в имперском флоте, однако функция у них теперь иная, в открытый бой они вступают лишь с не представляющим серьёзной угрозы противником.

2) Принуждение врага сосредоточить силы в определённом малом участке пространства, что сделает его крайне уязвимым. Данный вариант идеально подходит для агрессора, напавшего на чужую планету. Отступит защитник, и удары немедленно будут нанесены по его городам и мирному населению. Это жестокая но крайне эффективная и рациональная тактика, правда применимая лишь в военных конфликтах межзвёздного характера, причём когда у нападающего есть боевые звездолёты, а у жертвы нападения их нет, иначе та просто нанесёт ответные удары по его городам. Если одной из воющих сторон нужно оборонять некий стационарный объект – планету, космическую станцию, потерявший ход корабль и т.п., ей конец, потому что стационарные предсказуемо движущиеся объекты защитить невозможно, можно только дать им погибнуть или погибнуть самому, защищая их.

3) Гонка на выживание. Один корабль удирает, другой его преследует. Видимость здесь ещё хуже чем в бою, ты никогда не знаешь, где враг находится в конкретный момент. Однако для преследования подобная конкретика и не нужна, достаточно обнаруживать следы, узнавать, где он был 20-30 минут назад. Поисковые детекторы боевых кораблей способны на это, удирающий может попытаться оторваться, сбить со следа, укрыться в астероидах либо на какой-нибудь планете или её спутнике, получится у него или нет – вопрос его профессионализма и фортуны. Но если не получится, гонка продолжится до тех пор, пока один из кораблей не истратит все энергетические резервы и не остановится. Без возможности маневрировать он станет лёгкой мишенью для второго корабля. От запаса хода участников подобного состязания и зависит, кто из них победит – «выживет». Шансы обоих кораблей при этом вполне равны, не рассчитав силы преследователь может остановиться раньше, и тогда сам превратится в жертву. Силовые установки современных кораблей позволяют им непрерывно перемещаться в течение 20-50 дней. Вообразите себе такой продолжительный марафон. Но иной альтернативы уничтожить вражеский корабль часто просто нет. Тут следует понимать, антигравитационный принцип движения делает судно безмассовым и лишь затем разгоняет. Пропадает энергия – возвращается масса, и скорость сразу падает почти до нулевой, антигравитационные корабли не могут лететь по инерции, у них нет массы, соответственно и инерции тоже нет, именно поэтому преследование всегда рано или поздно, но оканчивается. Очень часто гонка на вживание связана со сложной интеллектуальной игрой участвующих в ней кораблей и их экипажей. Тут важен и выбор скорости (чем она выше, тем быстрее расходуется энергия, чем ниже, тем уязвимее становится судно), и жёсткая экономия энергопотребления на всём, включая системы жизнеобеспечения вплоть до установок по регенерации воздуха, и характер маневрирования, и предпринимаемые шаги по маскировке-демаскировке, корабли могут постоянно меняться ролями, из преследуемого превращаясь в преследователя и наоборот. Представьте – разница с другим кораблём во времени полного истощения реактора всего лишь в 5 минут (при полуторамесячной гонке) определит выживешь ты или умрёшь. Драматизма тут хоть отбавляй. Не даром это избитая тема в фильмах.

4) Засада. Гонка на выживание может иметь целью заманить преследователя в ловушку. Если в конце пути удирающего ждёт корабль-заправщик, его оппоненту очевидно придёт конец. Впрочем, не всё так просто. Нужно помнить, что у многих кораблей есть гиперсвязь, а заправщики бывают и звездолётами. Преследователь не знает конечной точки пути, и соответственно никто из дружественных сил его там точно не ждёт, однако при наличии в составе его флота звездолёта-заправщика ничто не мешает ему запросить помощь последнего по гиперсвязи, сообщив свои координаты. Посредством гиперпрыжка тот легко нагонит участников гонки. Засады, да и сами гонки на выживание, следует устраивать лишь будучи уверенным, что звездолётов-заправщиков у противника нет.

5) Отсечение от баз. Гонки на выживание возможны лишь с планетолётами, звездолёт просто уйдёт в гиперпространство и всякое преследование на этом закончится. Изловить звездолёт намного сложнее. Один из наиболее эффективных способов – отсечение от баз. Захвати планету врага, и его кораблям станет некуда податься, пусть они болтаются в космосе сколько хотят, всё равно рано или поздно энергия у них иссякнет, сойдут на нет запасы продовольствия, прекратится регенерация воздуха и воды, и т.п. И они остановятся. К сожалению захватчика всегда существует опасность, что боевой звездолёт не будет «болтаться» просто так, а скажем атакует твою столицу или станет злостно пиратствовать, принуждая отдалённые периферийные планеты под страхом нанесения ударов по ним снабжать себя всем необходимым. Подобные случаи бывали в истории империи, о пиратах написано немало книг и снято ещё больше фильмов, и ряд из них основаны на реальных событиях. Как противодействие, государством иногда берутся в заложники семьи членов пиратского экипажа – «в связи с нуждами военного времени». Но это палка о двух концах – может вынудить сдаться, а может и озлобить и спровоцировать на крайне жестокие действия. Боевой звездолёт – страшная сила, жертв при ударах по гражданским объектам могут быть многие десятки миллионов.

6) Преследование. Та же гонка на выживание, только группа кораблей преследует один. Шансов у преследуемого, прямо скажем, немного, зато он на месяц-другой отвлекает вражескую эскадру на себя, давая дружественным силам передышку, время перегруппироваться и т.д.

7) Бессрочный бой. Сходятся две армады, но они и не думают вступать в линейный бой, они маневрируют, не давая врагу поразить себя. Это своего рода сражение на выживание. С учётом наличия кораблей-заправщиков оно может продолжаться до нескольких месяцев. Бессрочные бои бывают, если противники принципиально не хотят наносить удары по планетарным объектам друг друга опасаясь симметричных ответных ударов. При кажущейся простоте подобной тактики в действительности это наиболее требовательный к интеллектуальности полководцев, боевых кораблей и сил штабной аналитической поддержки вид боя, часто сверхдраматичный, связанный с жесточайшей экономией энергии экипажами на всём, с тщательным выбором скорости, порой опускающейся много ниже безопасного предела, маскировкой, созданием ложных целей, прятками за планетами, лунами и астероидами, и т.д.

8) Диверсионно-разведывательная деятельность. Боевые корабли не находятся в полёте вечно, периодически им требуется возвращение на базу, где они совершенно уязвимы. Зная, когда они там будут, можно нанести неожиданный удар, или же попытаться внедрить на них диверсионных роботов, чтобы вывести их из строя изнутри. Войнам часто предшествует широкомасштабная диверсионно-разведывательная деятельность, и одна из главных её целей – нейтрализация флота будущего противника и его портовой космической инфраструктуры.

Исключая линейную тактику, космическое сражение словно бой между двумя полуслепыми солдатами в темноте – при вспышках от взрывов они вроде бы успевают очень примерно увидеть тень врага, но чаще всего не знают где тот и палят более наугад. При этом одно из наиважнейших обстоятельств космического боя – наличие гиперсвязи. Врага видно плохо, дружественные же силы легко могут координировать свои действия, синхронизировать манёвры, узнавать текущую позицию друг друга, обмениваться данными о местоположении обнаруженного неприятеля. Во всяком случае крупные корабли (на мелких судах и катерах гиперсвязи не бывает, но они как правило всегда рядом с крупными судами, пользуясь теми как гипер ретрансляторами). Наиболее захватывающим нам представляется бессрочный бой. Со стороны он кажется хаосом, мешаниной из безумно мечущихся бесконечно огромных космических железных монстров, однако в реальности в эти якобы безумие и хаос заложены осмысленные эффективные глубоко просчитанные тактические схемы действий и перемещений. Временами такой бой может сегментироваться, разбиваться на отдельные локальные очаги, зачастую мы будем видеть нечто вроде «стайной охоты», когда несколько кораблей пытаются взять одного врага в тиски, зажать его между собой, чтобы далее попытаться накрыть облаком сплошного огня. Для экономии энергии корабли постоянно стремятся переходить на низкую опасную скорость, провоцируя неприятеля на растрату энергии и боекомплекта в попытках атак, иногда имитируют аварийные ситуации, усиливая свою привлекательность для нанесения ударов. Или напротив, прячутся, маскируются, караулят в засаде. Отправляют разведывательные сателлиты и затем снова принимают их на борт. И всё это длится бесконечно долго. Безумно долго. Благо корабль интеллектуален, люди ему только помогают, так что нельзя сказать, что они без сна проводят все эти напряжённые недели, хотя спать им безусловно приходится мало. Интеллект кораблей – отдельная история. Более интеллектуальные системы вы найдёте только у штабных аналитических служб. В армии в качестве искусственного интеллекта всегда применяется самый продвинутый его вид – ТР (технических разум). Специфика ТР в том, что он нуждается в обучении, в тренировочной работе, ему необходим собственный опыт. Поэтому как и всю прочую военную технику, суда флота тренируют, стараются почаще задействовать в учениях, даже погружают в учебные симуляции. Но особенно неоценим для судна опыт, полученный в реальном бою. Отличие боевых кораблей от большинства иной техники – уникальность строения, даже серийные экземпляры одной модели существенно отличаются друг от друга, так как процесс постройки боевого судна весьма продолжителен, а совершенствование его конструкции никогда не останавливается – каждое новое уже в чём-то лучше предыдущего. Непохожесть же в свою очередь означает, что между кораблями абсолютно невозможно копировать опыт, нельзя перенести его с бывалого поучаствовавшего во многих боях ветерана на «младенца». В целом это считается даже достоинством – опыт имеет обыкновение устаревать, новому судну лучше копить свой. И всё же в бою между двумя кораблями шансы более опытного предпочтительнее. Всё это придаёт бывалым опытным судам ореол легендарности, экипажи относятся к ним почти как к живым и чувствуют себя на них гораздо увереннее. Бой же превращается в интеллектуальное противостояние не только между людьми, но и между кораблями. Словно те и вправду живые.

 
1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99  100  101  102  103  104  105  106  107  108  109  110  111  112  113  114  115  116  117  118  119  120  121  122  123  124  125  126  127  128  129  130  131 
Рейтинг@Mail.ru