«Что я сделал(а) не так?»
Обычно это второй вопрос, который я получаю от родителей подростков. Первый вопрос – риторический: «Как мог мой ребенок [заполните пропуск]?»
Большинство родителей, которые приходят ко мне, отчаялись или озлобились – или то и другое, – и все они могут заполнить пропуск целым рядом недоуменных вопросов, например: «Зачем моя дочь ночью тайком убегает из дома на свидание со своим парнем, если они только что провели вместе все выходные?» или «Как мой сын мог забраться в винный бар родителей его друга, да еще и оставить там пустые бутылки?!».
Моя соседка, мать шестнадцатилетнего сына, была ошарашена, когда вместо учебы она застукала его курящим марихуану в своей комнате. Это было отвратительно, но еще больше ее удивило то, что при этом он открыл настежь окно (это было посредине зимы!), чтобы проветрить, – и ветер вдувал дым обратно в комнату, под дверь и вниз по лестнице – прямо к моей шокированной соседке на кухню!
«Как он может быть настолько глупым?» – спросила она меня.
Родители сразу винят себя за плохое поведение подростка, хотя и не могут понять, в чем именно их вина. Биологические родители могут быть виноваты в передаче «плохих» генов; а биологические и небиологические родители – в неправильном воспитании ребенка. В любом случае вы, родители, виноваты, верно?
Однако это происходит не из-за генов, и не из-за вашего воспитания, и не из-за того, что подростка ударили по голове и он проснулся инопланетянином с Планеты подростков.
Подростки отличаются от взрослых своим мозгом, в частности – двумя необычными особенностями своего мозга. Во-первых, на этом этапе развития их мозг является наиболее мощным и наиболее уязвимым, чем на любом другом этапе их жизни. Во-вторых, даже когда подростки обучаются, их мозг сокращает серое вещество и количество нейронов. Оба эти факта верны благодаря тому, что называется нейронной пластичностью.
Даже в подростковом возрасте я часто думала о мозге. Имеет ли значение, где человек вырос? Как он рос? Способен ли мозг, как и остальные части тела, изменяться в зависимости от того, что в него поступает и чему он подвергается? Я любила прокручивать эти вопросы в голове, и, когда я поступила в колледж, они возникли снова, только на этот раз у меня уже стали появляться намеки некоторых ответов.
Как-то летом, когда я была еще в средней школе, я вызвалась поработать волонтером в Гринвическом филиале Ассоциации помощи людям с задержками в развитии (АПЛЗР). Некоторые из тех, кто регулярно посещал АПЛЗР в Гринвиче, родились с синдромом Дауна. И хотя у всех из них были различные способности, большинство были самостоятельными. Они умели плавать, принимали участие в театральной программе; некоторые даже научились читать и писать. Благодаря материальной обеспеченности жителей Гринвича местная АПЛЗР всегда хорошо финансировалась, но многие из детей были из очень привилегированных слоев. По сей день я помню, как удивилась, увидев, как на наши мероприятия прибыл лимузин, из которого высадили малыша.
Эти дети находились в необычайно богатой стимулами среде, и нахождение в этой обогащающей среде благоприятно сказывалось на них. Несмотря на их достаточно серьезные диагнозы, они были активными и любопытными и многие добивались таких же успехов в чтении и арифметике, как и обычные дети их возраста. Я знала, что они не только отлично проводили день в АПЛЗР, но и после возвращения домой часто получали физиотерапию и частные уроки.
Находясь в городе Смит, я имела возможность увидеть, какой была жизнь для умственно отсталых, которые не имели тех же преимуществ, что дети из Гринвичской АПЛЗР. Я работала волонтером несколько часов в неделю в государственной школе Белчертауна – государственном учреждении с семидесятилетней историей, где находились люди с когнитивными проблемами. Это учреждение находилось всего в нескольких милях от Смита. Контингент Белчертауна варьировал от детей до очень пожилых людей, многие из которых провели большую часть их жизнь в этом учреждении. Перед его закрытием в 1992 году в Белчертауне было полторы тысячи человек, в возрасте от одного до восьмидесяти восьми лет, которые жили в тринадцати общежитиях. Больница этого учреждения была недоукомплектована персоналом, даже после того, как местная газета написала о переполненности и жестоком обращении в 1960-х.
Когда я стала там волонтером в 1975 году, я в основном проводила время в детском общежитии. Это не было приятным местом. Комнаты пропахли дезинфекцией, игрушек было мало, и многие из детей подолгу не мылись. Подобно детям в АПЛЗР Гринвича, у всех была разная степень задержки развития, но даже более сохранные дети отставали от своих сверстников в АПЛЗР. Они сидели по углам, раскачивались и с трудом говорили, а их глаза казались пустыми.
В этот период в научном сообществе шли дискуссии о природе и воспитании и мои профессора психологии и биологии в Университете Смита обсуждали, насколько характер человека, начиная с его личности и заканчивая интеллектом, симпатиями и антипатиями, зависит от генов (природы) и насколько от влияния окружающей среды (воспитания). В Белчертауне наблюдалось явно мало воспитания, в то время как в АПЛЗР всегда была какая-то активность, специализированные методы лечения, обучение и, прежде всего, стимулирование.
В какой-то момент я поняла, что дети в Белчертауне, которые имели такую же задержку и те же препятствия, которые нужно преодолеть, были в гораздо худшем состоянии, чем дети в АПЛЗР в Гринвиче. И – по крайней мере, с моей ограниченной точки зрения – окружающая среда играла в этом основополагающую роль. Было ясно: мозг детей в АПЛЗР стимулировался и поощрялся к развитию, а мозг детей в Белчертауне – нет.
Как нет двух одинаковых отпечатков пальцев, так нет и двух одинаковых мозгов. Все, что мы делаем, думаем, говорим и чувствуем, влияет на развитие нашего самого драгоценного органа, и эти события вызывают все больше изменений в нем – до тех пор, пока цепочка действий и реакций не становится слишком запутанной, чтобы распутать ее или удалить. Наш мозги, в сущности, создают сами себя. Они не только служат потребностям и функциям конкретного человека, но и формируются – обустраиваются, если хотите, – с помощью конкретного опыта этого человека.
В нейробиологии мы называем уникальную способность человеческого мозга создавать себя пластичностью. Мышление, планирование, обучение, действие – все это влияет на физическую структуру и функциональную организацию мозга в соответствии с теорией нейропластичности.
Еще во времена Сократа некоторые считали, что мозг можно «натренировать», или изменить так, как гимнаст тренирует свое тело балансировать на перекладине. В 1942 году британский физиолог, лауреат Нобелевской премии Чарльз Шеррингтон писал, что человеческий мозг похож на «волшебный ткацкий станок, в котором миллионы двигающихся челноков ткут неясную картину, всегда имеющую смысл, хотя и всегда непостоянную». В сущности, человеческий мозг, говорил Шеррингтон, всегда находится в состоянии потока (постоянных изменений).
Через пять лет после Шеррингтона Дональд Хебб, американский нейропсихолог, был поражен случайным озарением, которое привело его к созданию первого квазиэкспериментального теста на пластичность мозга.
Когда этот сорокатрехлетний исследователь взял домой крысят из своей лаборатории в Университете Макгилла в Канаде и дал их своим детям в качестве домашних животных, он позволил этим грызунам свободно перемещаться по дому. Озарение Хебба состояло в том, что он захотел сравнить мозги этих свободно перемещающихся крыс с теми крысами, которые содержались в клетках его лаборатории.
Через несколько недель он устроил для этих двух групп крыс своего рода тест интеллекта, заставив их пройти через лабиринт. Домашние крысы, которые могли свободно перемещаться по дому Хебба и беспрепятственно общаться друг с другом, а также с Хеббом и его семьей, значительно лучше ориентировались в лабиринте, чем крысы, ограниченные небольшими клетками.
К концу 1990-х годов исследователи подтвердили ряд изменений в размере мозга, объеме серого вещества, размере нейронов, дендритных ветвлениях, а также количестве синапсов в нейронах, связанных с опытом и стимулированием. Ученые пришли к выводу: чем сильнее стимуляция и чем обширнее опыт, тем крупнее нейроны, плотнее дендриты, больше количество синапсов и объемнее серое вещество.
На старших курсах в Университете Смита в 1977—1978 годах я написала первую профессиональную журнальную статью под руководством Нико Спинелли, профессора кафедры психологии и информатики Университета штата Массачусетс, Амхерст. Он проводил новаторские эксперименты по пластичности зрительной коры.
Предыдущие исследования изучали мозг млекопитающих, выросших в обедненной среде. Спинелли хотел посмотреть, будет ли пластичность работать в «нормальной» среде. Поэтому мы взяли котят, воспитанных их матерями в стандартных условиях, и предложили им то, что называется обучением избеганию. В этих экспериментах «безопасный» и «небезопасный» стимулы ассоциировались с двумя различными визуальными воздействиями: вертикальными и горизонтальными линиями. Поскольку котята научились связывать безопасный стимул с горизонтальной или вертикальной линией, число нейронов в этих частях визуальной коры увеличивалось. Результаты, которые были опубликованы в журнале Science, подтвердили, «что раннее обучение производит пластические изменения в структуре развивающегося мозга», или, выражаясь проще, молодой мозг формируется с помощью опыта.
Конечно, взрослый мозг также может формироваться опытом. Исследователи пластичности нейронов обнаружили, что даже в старости мозг можно перестроить – просто не так легко и не так устойчиво, как в детстве и подростковом возрасте.
Если детский мозг будет реагировать и меняться в ответ на практически любую стимуляцию, то пластичность взрослых работает только в определенных поведенческих контекстах.
Например, у таксистов Лондона (как известно, сложного для навигации города) ученые обнаружили увеличенный гиппокамп, в частности в области, ответственной за пространственную память. У скрипачей и виолончелистов, которые должны использовать свои руки плавно и быстро, была обнаружена увеличенная моторная область коры. А в необычном эксперименте, проведенном несколько лет назад Патрицией Мак-Кинли из Университета Макгилла, удалось доказать, что обучение танго, которое подразумевает одновременно сложные движения и тонкое чувство равновесия, улучшало способности пожилых людей в возрасте 68—91 года переключаться между двумя разными когнитивными задачами. Пластичность, таким образом, в каком-то смысле еще один синоним слова «обучение».
Первые несколько лет детства длится критический период пластичности, в котором обучение происходит быстро и легко. Эксперты по эволюции считают, что это способ мозга помочь нам быстрее адаптироваться к конкретной среде, в которой нас воспитывают. Концепция здесь та же, что и у импринтинга, когда у утенка развивается глубокое и мощное желание следовать за матерью-уткой, а не за кем-то еще.
Когда мне было пять лет, я видела это в действии, хотя я, конечно, не знала, как это работает. Была Пасха, и только что родился мой младший брат. Возможно, из-за этого друзья моих родителей дали мне мою собственную «лялю-уточку», к ужасу моих родителей. Я обожала эту пушистую птичку и была абсолютно очарована тем, что она будет следовать за мной по дому и даже пойдет со мной во двор. Поскольку я была с этой уточкой почти с ее рождения, она посчитала меня своей мамой.
Годы спустя я читала детскую книгу «Ты моя мама?» П. Д. Истмэна своим сыновьям. В принципе, эта книга об импринтинге. Молодой птенец покидает свое гнездо, пока его мать ушла искать пищу, и отправляется в путешествие. Каждому животному и каждому предмету, который он встречает, – котенку, курице, собаке, корове, автомобилю, даже огромному экскаватору – он задает вопрос о своей принадлежности. К счастью экскаватор поднимает его наверх обратно в гнездо и кладет рядом с его настоящей мамой.
Я, пятилетняя, была единственной мамой моего утенка.
К сожалению, конец наших отношений было внезапным и жестоким. Примерно через неделю после Пасхи я вернулась домой из детского сада, и мой утенок снова стал ходить за мной по дому. Но на этот раз, когда я прошмыгнула между кухней и столовой через вращающиеся двери, птенцу не удалось сделать это и его сплющило. Я плакала в течение нескольких дней.
Тринадцать лет спустя, на первом курсе Университета Смита, я создала свой собственный эксперимент по импринтингу с цыплятами для класса по продвинутой биологии. Чтобы произвести импринтинг цыплят на звук, я целую неделю «облучала» их конкретными звуками или тонами. В конце обучающего периода птенцы были помещены на своего рода подиум и им воспроизводились два звука – один из них знакомый звук, который я включала им семь дней подряд. Все цыплята пошли на знакомый звук: звук запечатлелся в них. Я помню это так хорошо, потому что моя мама была в гостях у меня во время эксперимента и она помогла мне печатать результаты!
Как на самом деле происходит обучение? Молодой и старый мозг работают одинаково, получая информацию от органов слуха, зрения, вкуса, осязания, обоняния. Сенсорная информация передается через сеть нейронов и хранится в кратковременной памяти. Эта область памяти является крайне неустойчивой и постоянно получает информацию из почти непрерывного информационного потока, с которым органы чувств сталкиваются каждую минуту во время нашего бодрствования. После обработки информации в краткосрочной памяти она сравнивается с существующими воспоминаниями и если она совпадает с ними, то отсеивается. (Пространство мозга слишком ограничено и слишком драгоценно, чтобы занимать его нейронными дубликатами.) Если информация является новой, то она отравляется в одно из мест в головном мозге, где хранятся долгосрочные воспоминания.
Хотя почти и мгновенная, передача сенсорной информации не является совершенной. Как иногда прерывается плавный сигнал в телевизоре, искажая на миг изображение, так искажается информация, когда она перемещается вверх и вниз по аксонам нейронов. Это объясняет, почему наши воспоминания никогда не идеальны, но имеют прорехи или нестыковки, которые мы иногда заполняем, пусть и бессознательно, ложной информацией.
Мозг запрограммирован обращать особое внимание на новую информацию, а это на самом деле и является обучением. Чем больше активности, или возбуждения, между конкретным набором нейронов, тем сильнее синапсы. Таким образом, рост мозга является результатом его возбуждения. А как вы помните, молодой мозг имеет больше возбуждающих синапсов, чем тормозных.
Чем чаще какая-то часть информации повторяется или повторно изучается, тем сильнее становятся нейроны и соединение уподобляется хорошо протоптанной тропинке в лесу. «Частота» и «новизна» – вот ключевые слова. Чем чаще и чем «недавнее» мы узнаем что-то, а затем вспоминаем или используем снова, чем глубже укореняется знание, будь то запоминание маршрута между домом и работой или добавление контакта в список вашего смартфона. В обоих случаях техника обучения зависит от синапса – крошечного пространства, где пакеты информации передаются от одного нейрона к другому через химических посланников.
Чтобы эти нервные связи образовались, обе стороны синапса должны быть «включены», то есть находиться в состоянии возбуждения. Когда интенсивность возбуждающего сигнала превышает определенный уровень, то принимающий нейрон активируется и начинается молекулярный процесс, называемый долговременной потенциацией, с помощью которого укрепляются синапсы и нейронные связи.
РИСУНОК 10. Долговременая потенциация (ДП) – это широко используемая модель «практического эффекта» обучения и памяти. A. Гиппокамп внутри височной доли. B. Активность клеток мозга, зафиксированная в гиппокампальных срезах, взятых у грызунов, показывает изменения в клеточных сигналах после стимуляции. C. Эксперименты с ДП обычно фиксируют повторяющиеся небольшие реакции на стимулы до тех пор, пока не будет дана серия стимулирующих импульсов (это похоже на «практический эффект»). После чего реакции нейронов на первоначальные стимулы усиливаются, как будто они были «запомнены».
Процесс долговременной потенциации, или ДП, это сложный каскад событий, задействующий молекулы, белки и ферменты, который начинается и заканчивается в синапсах.
ДП начинается с главного возбуждающего нейромедиатора, глутаминовой кислоты, которая выделяется на терминал аксона одного нейрона, через синапс, к рецептору на дендрите принимающего нейрона. Глутаминовая кислота напрямую участвует в строительстве более сильных синапсов. Как она это делает? Глутаминовая кислота действует в качестве катализатора и запускает цепную реакцию, которая создает большие по размеру и более сильные синапсы, или связи, в проводящих путях мозга.
Когда глутаминовая кислота активирует рецептор, она заставляет ионы кальция перемещаться вокруг синапса. Кальций, в свою очередь, активирует множество ферментов и молекул и взаимодействует с определенными белками, чтобы изменить их форму и поведение. И это может изменить структуру синапса и нейрона, чтобы сделать их более или менее активными. Кальций может изменить существующие белки очень быстро, от нескольких секунд до нескольких часов, и он также может активировать гены, чтобы создать новые белки – этот процесс занимает от нескольких часов до нескольких дней.
РИСУНОК 11. Новые рецепторы добавляются в синапсы в процессе обучения и запоминания, а также ДП: сигналы аксонов, которые изначально вызывали малый отклик, вызывают больший отклик в нейронах после ДП благодаря развитию более крупного синапса.
Конечным результатом является синапс, более сильный и крупный по размеру, и это ведет к большей силе реакции в активированной клетке.
В экспериментах эту усиленную реакцию можно измерить как более мощный электрический сигнал. По сравнению с реакцией до «тренировки» и последующим построением сильного синапса, реакция в клетке после этой потенциации гораздо мощнее. На самом деле, если вы изучаете все это, вы создаете новые синапсы, когда читаете данные строки. Всего через несколько минут после того, как вы узнаете что-то новое, ваши синапсы начинают расти сильнее. Через несколько часов они становятся более сильными и крупными.
Джон Эклс, который получил Нобелевскую премию за свои ранние работы по изучению синапсов, удивился, насколько много стимуляции нужно, чтобы произвести изменения синапса:
«В попытке объяснить феномены обучения самым малоубедительным является то, что длительные периоды избыточного использования или неиспользования необходимы, чтобы произвести явные синаптические изменения».
Эклсу не удалось понять, что повторы, которые он отмечал с такой безнадежностью, – эти «длительные периоды избыточного использования» – представляли собой работу мозга, его научение и приобретение им знаний. После повторной стимуляции клетки мозга будут реагировать гораздо сильнее на раздражитель, чем первоначально. Следовательно, нейронная цепь «учится». И чем больше укоренены знания, тем легче вспомнить их и использовать.
Когда лыжники участвуют в слаломе, самый быстрый маршрут вниз становится отчетливым. Возникают колеи. К тому времени, когда последние спортсмены стартуют, маршрут так глубоко отпечатывается в снегу, что они не могут выехать из него, да им и не хочется это делать. Глубоко отпечатанный след направляет их вниз по пути, который им не нужно искать.
Процесс тонкой настройки и выключения нейронных связей, которые были созданы в детстве, но больше не нужны, называется прореживание, или прунинг. Он ускоряется с середины до конца пубертата, когда удаляются ненужные синапсы. Ученые называют эту фазу прореживания своего рода «нейронным дарвинизмом», в которой выживают только «сильнейшие», то есть наиболее часто используемые нейроны.
Чем объясняется потеря серого вещества на столь раннем этапе развития человека, когда многие когнитивные и познавательные функции еще в полной мере не развиты? В последние несколько лет исследователи обнаружили прямую корреляцию между уменьшением у подростков серого вещества и увеличением белого вещества. Ученые знают, что серое вещество продолжает уменьшаться и во взрослой жизни, особенно после шестидесяти лет, но они считают, что уменьшение объема серого вещества в подростковом возрасте – это существенно иной процесс. В дальнейшей жизни серое вещество уменьшается вследствие дегенеративных процессов, то есть происходит сжатие клеток и их отмирание, в то время как в подростковом возрасте уменьшение серого вещества является следствием пластичности мозга. («Используй или потеряешь!»)
Исследователи Калифорнийского университета обнаружили, что прунинг не только повышает эффективность мозга, но и что более высокий уровень интеллекта может коррелировать с длительным, ускоренным ростом нейронов в детстве с последующим энергичным прунингом в подростковом возрасте. Именно поэтому в разгар хаоса пубертата подростки развивают более компактную и эффективную взрослую «ментальную машину».
Взрослые имеют преимущество перед детьми и подростками в том, что их белое вещество лучше развито, то есть они имеют быстрые соединения между разными областями мозга.
Настоящей новостью в науке является то, что подростковый мозг наиболее приспособлен к обучению. И этот факт не следует принимать как должное! ДП сильнее выражена в подростковом возрасте. Животные-подростки учатся быстрее взрослых, и ученые хотели бы узнать, происходит ли это из-за лучшей синаптической пластичности.
РИСУНОК 12. Серое вещество и белое вещество развиваются в течение жизни по-разному. У детей и подростков больше серого вещества и синапсов, чем у взрослых, потому что по мере старения мозг удаляет ненужные соединения. Тем не менее в старости белое вещество также уменьшается, отчего возникают возрастные когнитивные проблемы вроде потери памяти или деменций.
Ученые проводили исследования на срезах мозга крыс, чтобы посмотреть на ДП у крыс-подростков и взрослых животных. Они обнаружили, что ДП гораздо сильнее у крыс-подростков. Сравнения «до» и «после» импульсной стимуляции показали, что синапсы на подростковых срезах были примерно в полтора раз увеличены и что это продолжалось гораздо дольше.
Это означает, что запоминание происходит легче и воспоминания сохраняются лучше, если обучение идет в подростковом возрасте, а не во взрослом. Данный факт не следует игнорировать! Это время, чтобы определять сильные стороны и вкладываться в проявляющиеся таланты. Это время, когда вы можете получить наилучшие результаты при проблемах в обучении и эмоциональном состоянии. Мы все долго считали, что уровень IQ, который «определили» у человека в начальной школе после прохождения одного из тестов, был окончательным вердиктом его интеллектуальной судьбы. Это неправда. Существует убедительные данные, показывающие, что IQ может меняться в подростковый период.
Между тринадцатью и семнадцатью годами одна треть людей сохраняет свой IQ на прежнем уровне, у одной трети – IQ уменьшается, а у самой выдающейся трети – IQ возрастает. Возрастание IQ отражается в изменениях на снимках мозга. При увеличении вербального IQ увеличивается и серое вещество в центрах мозга, отвечающих за речь. При увеличении невербального IQ увеличивается серое вещество в областях мозга, связанных с движениями рук.
Единственное, что разочаровало в этом исследовании, это то, что исследователи не выяснили, что именно делали эти люди в годы становления. Мы хотели бы знать секрет: что нужно делать, чтобы IQ вырос во время подросткового возраста? Утешает лишь то, что мы уже понимаем, что именно понижает IQ, но к этому мы вернемся позже.
РИСУНОК 13. Синаптическая пластичность подростков гораздо выраженнее, чем у взрослых. Чтобы проверить, выше ли способности к обучению у подростков по сравнению с взрослыми из-за наличия у них лучшей ДП, исследователи сравнили срезы гиппокампа подростков с аналогичными срезами у взрослых. Сигнал после импульсной стимуляции у подростков (B) был значительно выше и продолжался дольше, чем у взрослых (A).
Исследователи из Института генетики поведения Университета Колорадо недавно обнаружили, что по сравнению с детьми с более низким IQ дети с высоким IQ могут иметь продолжительный период обучения, в течение которого они поддерживают быстрый темп приобретения новых знаний. Этот продолжительный период обучения не обязательно приводит к повышению IQ, но он может иметь долгосрочные преимущества. Такого рода информацию нужно распространять повсюду: подростки должны знать, что это один из золотых периодов для их мозга!
Это, конечно, не поможет вам справиться с вашими головокружительно сложными подростками. Важно помнить: даже если их мозг обучается с максимальной скоростью, многое другое неэффективно – в том числе внимание, самодисциплина, завершение задач и управление эмоциями. Поэтому полезно повторять про себя мантру: «Одно дело за один раз». Старайтесь не перегружать своих подростков инструкциями. Помните: хотя они и выглядят так, как будто они могут делать несколько задач одновременно, на самом деле это у них не очень хорошо получается.
Даже если вы просто будете побуждать их останавливаться и задумывать над тем, что и когда они должны делать, это поможет увеличить приток крови к той области их мозга, которая задействована в многозадачности, и постепенно укрепит ее. Это касается инструкций и советов. Не только озвучивайте инструкции устно, но и записывайте их. А также ограничьте их число одной-двумя, а не тремя, четырьмя или пятью. Вы также можете помочь своим подросткам лучше управлять временем, купив им ежедневник и посоветовав записывать свои дела. Поступая таким образом постоянно, они будут обучать свой собственный мозг.
Возможно, самое важное – это установить границы. Для всего. Это то, что их чересчур активные мозги не могут сделать самостоятельно. Выделите конкретное количество времени, в течение которого вы позволите своему подростку общаться «виртуально». Конечно, это не означает, что дети будут неуклонно следовать вашей программе. Наверняка будут случайные сбои; возможно, их будет много. Вот почему вам нужно следить за ситуацией, проверять, как подростки делают свои домашние задания и сколько проводят времени за компьютером. Чем больше контроля с вашей стороны, тем меньше соблазнов для ваших подростков. А чем меньше искушений, тем лучше их мозг научится обходиться без постоянного отвлечения.
При неожиданных эмоциональных всплесках ваших детей сохранить спокойствие вам поможет простой счет до десяти – перед тем, как ответить им. Злиться или воспринимать подростковый кризис как детскую истерику не рекомендуется. Подростки полагают, что они взрослые, и чем чаще вы будете относиться к ним как к взрослым, тем больше шансов, что они на самом деле попробуют вести себя как взрослые.
Поскольку я врач и ученый, я могу усадить своих детей и сказать им: «Послушайте, если вы мне не верите, когда я говорю, что вы иррациональны, или импульсивны, или чрезмерно чувствительны, позвольте мне объяснить вам, почему это «вина» вашего мозга». К тому времени, как вы закончите читать эту книгу, вы будете в состоянии сделать то же самое.
И поверьте мне, это работает. Я видела это не только на своих сыновьях, но и в общении с другими подростками – после того как я проводила презентации в школах. Они буквально очаровываются нейробиологией и тем, что существует логика и обоснование того, что казалось им необъяснимыми потрясениями. Однако есть риск, что эти «обоснования мозга» станут своего рода подростковым оружием.
«Мой мозг заставил меня сделать это», – захочется сказать вашему сыну, когда он решит угнать автомобиль отца и кататься до полуночи.
«Нет! – должны ответить ему вы. – Твой мозг иногда является объяснением; но не оправданием».
Подростки достаточно осознают свои действия, чтобы знать, что они не являются автоматами. И это означает, что они способны изменять и отвечать за изменения собственного поведения. Это то, о чем вы должны напоминать им снова и снова. Наука о мозге не может служить оправданием глупого, незаконного или аморального поведения.
Подростки должны получать больше разъяснений. Точно так же, как я созвала своих сыновей, услышав об утонувшем Дэне, и вы, когда прочитаете или услышите о чем-то подобным, должны созвать своих детей-подростков, сесть с ними и напомнить им о том, почему эти вещи происходят. Не ждите, что они автоматически поймут подтекст и более тонкие связи, лучше перестраховаться и явно указать на очевидные вещи. Я делала это так много раз, что мои дети дали мне прозвище «Капитан Очевидность»!
Существует логическое объяснение, почему пластичность появляется в детстве и юности: выживание зависит от адаптации к окружающей среде, поэтому молодой мозг должен быть гибким и податливым. Рост синапсов делает подростков «машинами по обучению», но тот факт, что их мозговые сигналы могут легко сбиться с курса, делает эти скачки роста несколько опасными.
В эволюционном смысле открытость для новых идей, изучение новых вещей приводит к полезному опыту, который необходим для выживания. У взрослых миелин позволяет определенным сигналам мозга быстро связаться с лобной долей, где импульс будет приторможен. Поэтому прунинг происходит одновременно с ростом миелинизации, что дает подросткам короткий промежуток, чтобы испытать мир и выяснить, что сделает их счастливее, здоровее и, можно надеяться, мудрее. Это объясняет, почему поведение некоторых подростков может казаться таким разрушительным.
Мой коллега рассказал мне об одном подростке. Его остановили полицейские и выписали штраф за то, что он ехал со скоростью 113 миль в час[2]. Мальчик был в ярости – не потому, что его оштрафовали, он признал, что превысил скорость; а потому, что его оштрафовали за «неосторожную езду», хотя он, по его словам, все спланировал заранее. Он точно знал, что собирается делать и где он это будет делать, и даже выбрал прямой участок дороги с небольшим трафиком и хорошую погоду, чтобы сделать это.
Существует и еще одна причина этого явного конфликта личных интересов, базирующаяся на эволюции. Ученые из Университетского колледжа в Лондоне недавно попросили пятьдесят девять молодых людей, в возрасте от девяти до двадцати шести лет, предсказать вероятность того, что с ними может случиться что-то плохое. В списке были сорок печальных событий – от заражения вшами до получения серьезной травмы в автомобильной аварии. После того как испытуемые высказали свои догадки, им показали реальные шансы на то, что эти плохие вещи произойдут. Затем им предложили снова предсказать свои шансы.