bannerbannerbanner
Мозг подростка. Спасительные рекомендации нейробиолога для родителей тинейджеров

Фрэнсис Э. Дженсен
Мозг подростка. Спасительные рекомендации нейробиолога для родителей тинейджеров

Полная версия

Глава 3
Под микроскопом

Если вы посмотрите на любую часть мозга под микроскопом, вы увидите, что она просто переполнена клетками. На самом деле между миллиардами клеток мозга практически нет свободного места. Эволюция проследила за этим и мудро использовала каждый кубический микрон мозга.

Клетка – это небольшой строительный блок; каждая из них имеет собственный командный центр, называемый ядром. Это большое овальное тело недалеко от центра клетки. Любой орган, ткань, мышца и т. д. составлены из разных клеток, которых в нашем организме более двухсот типов. В мозге существует уникальный тип клеток – нейроны. Это клетки, о которых мы будем говорить часто в этой книге. Мысли, чувства, движения и настроения – это не более чем общающиеся между собой нейроны, посылающие электрические сообщения друг другу.

Я помню, как в первый раз посмотрела на клетки головного мозга под микроскопом. В середине и конце 1970-х годов единственный способ изучать изменения в нейронах, например которые происходят во время обучения, – это смотреть в микроскоп на клетки через определенные промежутки времени. Сегодня у нас есть удивительные томографы и специализированные микроскопы, которые позволяют заглянуть в мозг и увидеть, как клетки и синапсы изменяются в реальном времени.

Если вы изучаете что-то прямо сейчас, ваши нейроны изменятся через пятнадцать минут, создавая больше синапсов и рецепторов. Изменения начинаются в течение миллисекунд обучения чему-то новому и происходят в течение нескольких минут и часов. Когда я смотрю на клетки головного мозга под микроскопом, я думаю о миллиардах нейронов, которые соединены между собой, и о том, как мы все еще пытаемся понять эти соединения. Сегодня мы знаем, что нет двух человек, у которых были бы одинаковые соединения в мозге, и что опыт формируется у всех по-разному. Это последний рубеж, наша собственная внутренняя граница, и мы только сейчас начинаем видеть все паттерны.

В человеческом мозге существует сто миллиардов нейронов и примерно триста тысяч из них можно разместить на булавочной головке. А если разместить один за другим нейроны одной только коры мозга, то эта цепочка может растянуться на сто тысяч миль – этого будет достаточно, чтобы четыре раза обогнуть земной шар.

При рождении у нас больше нейронов, чем в любой другой период нашей жизни. На самом деле наш мозг имеет наибольшую плотность нейронов до рождения, между третьим и шестым месяцем беременности. Сокращение большой части серого вещества происходит в последний триместр и в первый год жизни ребенка. Тем не менее к моменту рождения мозг «переполнен» нейронами. Почему? Переизбыток нервных клеток в организме младенца необходим, чтобы ответить на шквал стимулов, который возникает с приходом в этот мир. В ответ на все новые звуки, запахи, ощущения и т. д. нейроны разветвляются в мозге ребенка, создавая густой лес нейронных связей.

Тогда почему не все дети крошечные Моцарты и Эйнштейны? Потому что, когда мы рождаемся, лишь очень маленький процент этого избытка нейронов соединяется в сеть. Информация поступает внутрь, активирует нейроны, но мозг не знает, куда направлять ее дальше. Как человек, оказавшийся в центре незнакомого и многолюдного города, мозг младенца находится в окружении возможностей и пока еще не имеет карты и компаса, чтобы ориентироваться в этом странном новом мире.

«Все младенцы рождаются в состоянии психоделического благолепия, напоминающего галлюцинирование под влиянием наркотиков» – так красочно описывает это состояние Даниэль Левитин, нейробиолог из Университета Макгилла в Монреале, Канада. Нейрон отвечает на стимул всплеском активности, называемым потенциалом действия. Это электрический сигнал, проходящий из точки контакта со стимулом (или нейромедиатором) принимающей «конечности» нейрона, называемой дендритом, через тело клетки.

Когда мы видим красный цвет, чувствуем запах розы, шевелим мускулом или запоминаем чье-то имя, наши нервные клетки генерируют потенциалы действия.

РИСУНОК 6. Анатомия нейронов, аксонов, нейромедиаторов, синапсов, дендритов и миелина. Сигналы между клетками проходят в одном направлении, от аксонов к дендритному шипику, через синапс. Аксоны с миелиновым покрытием передают сигналы быстрее, чем без покрытия. В синапсе молекула нейромедиатора связывается с рецептором на дендритном шипике.


Тело клетки каждого нейрона можно представить в виде реле, где есть входящие и исходящие сигналы. Как только исходящий сигнал достигает синаптического окончания, которым заканчивается аксон, он запускает реакцию, в результате которой синаптическое окончание высвобождает молекулы химических посланников под названием нейромедиаторы, или нейротрансмиттеры.

Точка соприкосновения между двумя нейронами называется синапс, и его ширина составляет не более двух миллионных долей дюйма. Сигнал идет через тело нейрона в аксон, в его синаптическое окончание. И оттуда выделяется в синапс уже как химическое послание – в виде молекул нейромедиаторов. Как проникающая смазка, нейромедиаторы пересекают синапс и воздействуют на рецептор дендрита следующего нейрона – и таким образом несут информацию от одной клетки к другой. Активированный рецептор запускает цепную реакцию сигналов в принимающей клетке, вызывая в ней электрический импульс, или потенциал действия, который проходит от дендрита через тело клетки к ее аксону.

Чтобы нейронам выжить, им необходимы вспомогательные клетки, называемые глии. Есть несколько типов глий: астроциты, микроглии и олигодендроциты. Астроциты защищают нейроны, подпитывая их и очищая межклеточную жидкость от нежелательных химических вещества. Это помогает поддерживать нейроны мозга на оптимальном уровне функционирования. Микроглии – это крошечные клетки, которые движутся вокруг нейрона и активируются, когда появляется инфекция или воспаление, для борьбы с повреждениями – как армия, которая всегда наготове. Но поскольку мозг создан разумно, микроглии также имеют и повседневные функции, своего рода обязанности по ведению домашнего хозяйства. Поэтому, даже если они не активированы, они все равно помогают поддерживать здоровье и благополучие синапсов.

Олигодендроциты производят миелин, который покрывает аксоны нейронов. Эти клетки, плотно сконцентрированные в белом веществе, оборачивают миелин вокруг аксонов, чтобы изолировать их – так же, как резина изолирует электрический провод.


Хотя вы родились с большим запасом нейронов, основная часть синапсов в коре к моменту рождения еще не сформирована. В нижних областях, таких как ствол мозга, синапсы почти все зрелые. В коре же синапсы образуются в основном после рождения – во время всплеска активности, известного как критический период, о котором я упоминала ранее. На этом этапе развития мозг ребенка создает два миллиона синапсов каждую секунду, что позволяет младенцу обрести цветовое зрение, научиться хватать, распознавать лица и сформировать привязанность к родителям.

Мозг младенца как бы выдвигает миллиарды антенн, которые сканируют мир информации. Чтобы каждый синапс выжил, он должен найти другой нейрон, которому он может отправить информацию; вот почему количество синапсов в мозге ребенка достигает пика в детстве.

Серое вещество – ткань мозга, отвечающая за обработку информации, – продолжает уплотняться в детстве, по мере того как клетки мозга создают дополнительные соединения за счет разветвления дендритов. Это похоже на дерево, выпускающее дополнительные ветви. Стимуляция, переживания, повторяющиеся ощущения – все это способствует созданию новых нервных путей. Это объясняет повышенную способность подростков быстро учиться новым вещам – от управления телевизионным пультом до китайского языка.

Обилие серого вещества, однако, может вызывать и своего рода когнитивный диссонанс, когда мозгу трудно выбрать правильный сигнал из всего этого «шума». В результате, к концу подросткового периода, мозг начинает устранять излишки синапсов и упорядочивать соединения.

Синапсы бывают двух видов: те, которые возбуждают, или включают, соседний нейрон, и те, которые тормозят, или выключают, соседний нейрон. Является ли синапс возбуждающим или то́рмозным – зависит от типа нейромедиатора, который выделяется из синаптического окончания аксона, и от рецептора, «принимающего» нейромедиатор.


РИСУНОК 7A. Тормозные клетки могут остановить передачу сигнала. Они высвобождают тормозные нейромедиаторы, которые остановят сигнал в нейроне и «отключат» клетку.


Если представить нейромедиатор в виде простой геометрической формы, скажем квадрата или круга, то конкретный рецептор для этого типа нейромедиатора будет иметь взаимодополняющую форму – чтобы идеально ему подойти. Так же, как квадратный колышек входит только в квадратное отверстие, и «ключи» нейромедиаторов соответствуют только идеально принимающим рецепторам-«замкам». Это помогает синапсам не путать сообщения. В дополнение к почти идеальной стыковке нейромедиаторов и рецепторов сигнал очищается и еще одним способом – астроциты сразу очищают все оставшиеся нейромедиаторы после их выделения. Это происходит за миллисекунды, поскольку продолжительность сигналов между клетками мозга должна быть быстрой, как резкая вспышка.


РИСУНОК 7В. Возбуждающие и тормозные синапсы: возбуждающие нейроны испускают возбуждающие нейромедиаторы (например, глутаминовую кислоту), которые связываются с возбуждающими рецепторами и «включают» нейроны. Тормозные нейроны испускают тормозные нейромедиаторы (например, ГАМК), которые связываются с тормозными рецепторами и «отключают» нейрон.


После того как нейромедиатор прикрепился к рецептору принимающего нейрона, это соединение вызывает цепную реакцию. В дендритах принимающей клетки есть много белков, которые активизируются, когда синапс возбуждается или тормозится. В зависимости от своего типа, принимающий нейрон получает сообщение либо остановиться, либо включиться.

 

Если сообщение является «возбуждающим», принимающий нейрон отправляет информацию по собственному аксону через другую синаптическую щель и так далее. Нейрон может иметь до десяти тысяч синапсов и отправлять тысячи импульсов каждую секунду. За время, необходимое вам, чтобы моргнуть, нейрон может одновременно послать сигнал сотням тысяч других нейронов.

Некоторые из наиболее распространенных возбуждающих нейромедиаторов – это адреналин, норадреналин и глутаминовая кислота. Тормозные нейромедиаторы, такие как гамма-аминомасляная кислота (ГАМК) и серотонин, выступают в качестве расслабляющих веществ, успокаивающих тело и приказывающих ему замедлиться. Снижение уровня серотонина может привести к агрессии и депрессии.

Дофамин – это особый нейромедиатор, потому что он одновременно возбуждает и тормозит. Кроме того, наряду с адреналином и некоторыми другими веществами, он является гормоном. Когда он действует на надпочечники, он работает как гормон; когда он действует на мозг – это нейромедиатор. Будучи химическим посланником мозга, дофамин помогает мотивировать, настраивать и фокусировать ум, поскольку он является неотъемлемой частью системы вознаграждения мозга. Это нейрохимикат из разряда «я должен иметь это», который не только усиливает целенаправленную деятельность, но также может, при определенных обстоятельствах, привести к зависимости. Чем больше дофамина выделяется в мозг, тем сильнее активируются системы вознаграждения, и чем сильнее активируются эти системы, тем сильнее желание.

Не важно, какое это желание – поесть или сыграть в карты, выступить в зале заседаний или проявить себя в спальне. Например, ученым известно, что высококалорийные продукты стимулируют выброс большего количества дофамина в мозге. Почему? Потому что запас калорий увеличивает наши шансы на выживание. Когда мы страстно хотим съесть мороженого, или сыграть в азартную игру, или заняться сексом, нам, возможно, нужно не сладкое, деньги или оргазм. Мы жаждем дофамина.

Торможение нейронной реакции является столь же важным, как и ее возбуждение, когда дело доходит до «исполнительных» функций мозга. Примерами средств, которые связываются с тормозными синапсами, являются седативные средства, такие как барбитураты, алкоголь и антигистаминные препараты.

Синапсы будут иметь важное значение в нашей дискуссии о подростковом мозге, так как их количество и тип меняются с возрастом. Они также меняются в зависимости от объема стимуляции, которой подвергается мозг. Важная тема – это влияние наркотиков и алкоголя на эти синапсы. Мы рассмотрим ее в главе о наркомании.


Популярным инструментом, используемым исследователями для тестирования функции торможения является тест «Да/Нет», в ходе которого испытуемых просят нажать кнопку (ответ «Да»), когда появляется определенная буква или картинка, и не нажимать на эту кнопку (ответ «Нет»), когда появляется буква Х. Несколько исследований показали, что скорость, с которой испытуемый успешно тормозит реакцию, резко уменьшается в возрасте от восьми до двадцати лет. Иначе говоря, детям и подросткам требуется больше времени, чтобы понять, когда не нужно что-то делать.

Сигналы перемещаются из одной области мозга в другую по проводящим путям, и некоторые из этих путей идут вниз через основные отделы мозга, чтобы передавать сигналы к спинному мозгу и от него. Головной мозг и спинной мозг неразрывно связаны между собой этими волокнами. Сейчас все чаще проводятся исследования, которые изучают эти связи. Поскольку через аксоны к синапсам должны проходить быстрые электрические импульсы, они действуют как провода, проводящие электрический сигнал.

И так же, как электрическому проводу необходима изоляция, чтобы электричество не рассеивалось по всей его длине, то же самое нужно и аксонам. Поскольку в нашем мозге нет резины, наши аксоны покрыты жирной субстанцией под названием миелин (смотрите рисунок 6). Миелин нужен мозгу, чтобы нормально функционировать и передавать сигнал от одного участка к другому, а также к спинному мозгу. Как мы сказали ранее, миелин производится олигодендроцитами и имеет белый оттенок из-за содержания в нем жира: отсюда и термин «белое вещество». По существу, «смазывая провода», миелин позволяет сигналам проходить по аксонам быстрее, в сотни раз увеличивая скорость нейронной передачи.

Миелин также увеличивает частоту передачи в тридцать раз, помогая сократить время восстановления синапсов между активацией нейронов. Комбинация повышенной скорости и снижения времени восстановления оценивается исследователями как примерный эквивалент увеличения пропускной способности компьютера в три тысячи раз. (Миелин также является объектом атаки при рассеянном склерозе. У пациентов с рассеянным склерозом в белом веществе имеются участки воспаления, и именно по этой причине они могут утрачивать некоторые функции, например перестать ходить. Иногда только временно, до тех пор пока не уйдет воспаление.)

При рождении кора ребенка содержит мало миелина. Это объясняет, почему передача электрических импульсов у младенцев замедленна, а их реакция столь нетороплива. Тем не менее, ствол мозга ребенка почти полностью покрыт миелином, как у взрослого, так что он может контролировать автоматические функции, такие как дыхание, сердцебиение и деятельность желудочно-кишечного тракта, необходимые для поддержания жизни.

Связи во многих других областях мозга возникают после рождения, начиная с моторных и сенсорных областей в нижней и задней частях мозга. Когда эти области покрываются миелином, младенцы могут лучше обрабатывать основную информацию от своих органов чувств – глаз, ушей, рта, носа и кожи. В первый год формируются нервные участки, которые поддерживают области мозга, вовлеченные в зрение и другие первичные чувства, а также те, которые участвует в общей двигательной активности. Вот, в частности, почему требуется около года, чтобы ребенок стал достаточно скоординированным, чтобы ходить. Большая часть мозга миелинизируется в возрасте двух лет, а высокоуровневые области, участвующие в реализации функций речи и мелкой моторики, – в течение ближайших нескольких лет. К этому времени дети готовы учиться говорить и улучшать свою мелкую моторику.

Более сложные участки мозга, особенно лобные доли, формируются гораздо дольше и заканчивают созревание, когда человеку уже за двадцать.

Все это обучение зависит от возбуждения – движущей силы в нашем мозге. Возбуждающие сигналы между нейронами создают связи, необходимые для развития мозга. Возбуждение может прийти извне или изнутри, но независимо от этого, если какой-то нейронный путь постоянно активируется, синапсы между клетками усиливаются. Таким образом, клетки, которые активируются одновременно, связываются вместе.

В развивающемся мозге, особенно в раннем детстве, когда группы нейронов и синапсов активируются, процесс возбуждения «включает» молекулярный механизм синаптогенеза (создания новых синапсов). Количество синапсов увеличивается с младенчества до подросткового возраста, с максимальной скоростью – в раннем детстве. Поскольку синаптогенез зависит от активирования клеток друг другом, мозг ребенка имеет больше возбуждающих, а не тормозных нейромедиаторов и синапсов по сравнению с мозгом взрослого, где между этими двумя видами нейромедиаторов существует баланс.

Возбуждение является ключевым элементом обучения. Период в начале жизни, в котором процессы возбуждения явно преобладают, также называют «критическим периодом», когда обучение и запоминание являются более надежными, чем в более позднем возрасте. Это позволяет мозгу быть очень чувствительным к возбуждению и развиваться. К сожалению, чрезмерное возбуждение имеет свою цену: риск перевозбуждения. Это объясняет тот факт, почему заболевания, которые являются результатом перевозбуждения, типа эпилепсии, чаще встречаются в детском возрасте, чем у взрослых. Причиной приступов эпилепсии является то, что множество клеток мозга активизируются одновременно и нет достаточной блокировки погасить возбуждение.


РИСУНОК 8. Детский мозг имеет больше возбуждающих, чем тормозных синапсов: количество синапсов увеличивается с младенчества до подросткового возраста, с максимальной скоростью —в раннем детстве.


Разветвление дендритов достигает пика в первые несколько лет жизни, но, как мы видели, оно продолжается и в подростковом возрасте. Плотность серого вещества у девочек достигает максимума в одиннадцать лет, а у мальчиков – в четырнадцать лет, и она то увеличивается, то уменьшается на протяжении всего пубертата.


РИСУНОК 9. Влияние употребления алкоголя на мозг подростка. Алкоголь повреждает не только серое вещество. Было выявлено, что у подростков, злоупотребляющих алкоголем, страдает и белое вещество. Мы знаем, что белое вещество —миелиновая оболочка, которая помогает увеличить скорость и эффективность прохождения информации через мозг, продолжает развиваться в пубертате и в начале взрослой жизни. У подростков, употребляющих алкоголь, повреждается белое вещество мозолистого тела – образования, соединяющего два полушария мозга и дающего им возможность взаимодействовать друг с другом.


Количество белого вещества, или миелина, однако, имеет только одну траекторию в подростковом возрасте: восходящую. Это обнаружили Джей Гидд и его коллеги из Национального института психиатрии, просканировав мозг почти тысячи здоровых детей в возрасте от трех до восемнадцати лет.

Как мы видели на рисунке 4, исследователи из Университета Калифорнии, Лос-Анджелес, основываясь на этих выводах, сравнили сканы молодых взрослых, в возрасте от двадцати трех до тридцати, со сканами подростков, в возрасте от двенадцати до шестнадцати. Они обнаружили, что миелин по-прежнему производится и после подросткового возраста и даже после тридцати, что делает связи между областями мозга еще более эффективными.

Без этих изолированных соединений сигнал от одной области мозга – например, страх и стресс, исходящие из миндалины, – не может связаться с другой частью мозга – например, с оценкой происходящего, которую производит лобная доля. Для подростков, чей мозг еще формируется, это означает, что иногда они оказываются в опасной ситуации, не зная, что им следует предпринять дальше.

Это подтверждается в исследовании 2010 года, проведенном британским Красным Крестом. Ученые выясняли, как подростки реагируют на чрезвычайные ситуации с участием друга, который напился.

Более десяти процентов всех детей и подростков в возрасте от одиннадцати до шестнадцати лет когда-либо имели дело с другом, который плохо себя чувствовал или даже терял сознание вследствие чрезмерного употребления алкоголя. У половины из них друг в такой ситуации полностью отключался. В более широком смысле опрос показал, что девять из десяти подростков имели дело с каким-либо кризисом с участием другого человека – травмой головы, удушьем, приступом астмы, эпилептическим припадком и т. д. Сорок четыре процента опрошенных подростков признались, что паниковали в чрезвычайной ситуации, а почти половина (сорок шесть процентов) признались, что вообще не знали, как реагировать.

Дэн Гордон, пятнадцатилетний мальчик из Гемпшира, Англия, который дал интервью газете Guardian по поводу этого исследования, рассказал о вечеринке, на которой несовершеннолетние употребляли алкоголь. После того как одна девочка упала в обморок на пол, лицом вниз, и ее начало рвать, остальные подростки в комнате запаниковали. Посчитав, что нужно просто не дать ей задохнуться, они подняли ее, с трудом вывели на свежий воздух и стали ждать, когда она придет в себя. Дэн признался репортеру, что ни он, ни кто-либо другой на вечеринке не догадался вызвать скорую помощь. Другими словами, миндалины подростков распознали опасность, но их лобные доли не отреагировали на это. Вместо этого подростки действовали, не задумываясь о будущем и живя только настоящим моментом.

Мой сын Эндрю был свидетелем похожей истории в колледже. Он гостил у своей тогдашней подруги в колледже Бостона. К соседке этой подруги приехала гостья, застенчивая первокурсница с Юга, которая быстро опьянела на какой-то студенческой вечеринке. Когда Эндрю с подругой обнаружили, что молодая девушка потеряла сознание, они запаниковали. Вместо того чтобы вызвать службу спасения 911 или представителей службы безопасности студенческого городка или отвезти ее в отделение неотложной помощи, они позвали на помощь пару друзей, а потом поехали к нашему дому, который находился примерно в десяти милях от общежития.

 

«Мы не хотели звонить в службу безопасности студгородка», – объясняла подруга Эндрю, пока я осматривала девочку, которая в настоящий момент почти не реагировала ни на что.

«Она первокурсница. Если бы мы привезли ее в медицинский центр, мне и моей соседке по комнате было бы несдобровать».

Эндрю и его подруге тогда было по двадцать одному году, а этой гостье всего восемнадцать.

«А как насчет того, чтобы отвезти ее в больницу?» – спросила я.

«Мы не знали, насколько она пьяна, – сказал еще один их приятель. – Она разговаривала, когда мы сажали ее в машину, а теперь она полностью отключилась».

Никто из них на самом деле не знал эту девушку – в тот день они лишь мимолетно виделись с ней в первый раз, когда она приехала к соседке по комнате. У нее был кошелек и удостоверение личности из ее колледжа в Южной Каролине и никакой другой информации. Соседку, которая пригласила ее в Бостон, нигде не могли найти. Девушка была сонливой и быстро отключалась, а потом ее вырвало на пол. В этот момент я настояла, чтобы они отправили ее в местную больницу общего профиля, находившуюся всего в миле от нашего дома. Понадобилось три человека, чтобы донести девушку обратно в автомобиль. Минут через пятнадцать мне позвонила подруга Эндрю и сказала, что девушку кладут в больницу для наблюдения.

Бедняжка провела неприятную ночь в больнице, и ребята из колледжа забрали ее на следующий день. На обратном пути в Бостон они остановились у моего дома, чтобы собрать вещи, оставленные предыдущей ночью. Молодые первокурсники были бледными и очень уставшими, но в целом держались молодцом. Уровень алкоголя в крови девушки достиг рекордных 3,4 промилле, что более чем в четыре раза превышает уровень, разрешенный при вождении в США, и опасен для жизни. Если бы ее не привезли в больницу, где ей промыли желудок и дали активированный уголь, чтобы исключить дальнейшее всасывание алкоголя, последствия могли быть самые ужасные.

Я усадила ребят на кухне, открыла свой ноутбук и показала им изображение уровней содержания алкоголя в крови и их воздействие на координацию и сознание. Я указала, что уровень в четыре промилле – чуть больше, чем обнаружили у девушки, – может быть смертельным. Оказывается, девушка выпила около семнадцати рюмок в тот вечер – насколько она помнила. Не было никакого смысла задавать обычный вопрос: «О чем вы вообще думали?», но я чувствовала, что это хороший обучающий момент, чтобы показать им всем, насколько девушка была близка к трагическому концу.

Юная студентка оправилась и, надеюсь, выучила свой урок, но очевидно, что последствия неспособности принимать решения часто бывают катастрофическими для подростков.

Беннету Барберу было шестнадцать лет в канун Нового, 2008 года, когда он ушел с вечеринки у подруги в Марблхед, штат Массачусетс, и пошел домой. Было около половины двенадцатого вечера, шел снег и дул порывистый ветер со скоростью до тридцати миль в час. Одетый в джинсы и кроссовки, Беннет был пьян и дезориентирован, и, хотя до его дома было меньше километра, он заблудился. В итоге он рухнул лицом вниз, в сугроб.

В три часа утра его мать позвонила в полицию, и морозной ночью были начаты поиски. Несколько часов спустя спасатель обнаружил бутылку пива в снегу и последовал по расплывчатому следу. Когда Беннета нашли, он был в полубессознательном состоянии и страдал от переохлаждения. У него также не было одного кроссовка и носка. На машине скорой помощи школьника отвезли в больницу Массачусетса. Там обнаружили, что у него слишком низкая температура тела, а его правая ступня, казалось, была отморожена. Его поместили в специальную палату, чтобы поднять температуру тела, а впоследствии перевели в ожоговый центр для лечения обморожения.

Беннет позже сказал отцу, почему власти так долго его искали. Он старался скрыться от них! Полицейский отчет приводит подробности: мальчик помнит, что видел огни, но говорит, что он прятался каждый раз, когда кто-то с фонариком проходил мимо, потому что он не хотел попасть в беду из-за выпивки.

Девочка-подросток, у которой состоялась та стихийная вечеринка, когда ее родители уехали, сначала сказала полиции, что Беннет был пьян, когда он пришел туда, и что она какую-то часть пути сопровождала его домой.

И лишь в пять утра она сказала правду – что в доме было более десятка людей, многие из них пили алкоголь, все несовершеннолетние, и что она пыталась выпроводить всех примерно в полдвенадцатого – перед тем, как вернутся ее родители. Две девушки сказали, что они проводят Беннета, «но когда они вышли на улицу, мальчик был слишком пьян», и они привели его обратно и оставили одного, а сами стали помогать своей подруге наводить порядок. Это был последний раз, когда они видели Беннета.

Употребление подростками алкоголя было лишь половиной проблемы. Другая половина проблемы состояла в принятии плохих решений Беннетом и его друзьями, лжи, которая привела к задержке поисков, и в панике подростка при мысли о том, что его поймает полиция. Все подростки в этой ситуации проявили потрясающее непонимание ситуации.

Ученые говорят, что понимание зависит от способности посмотреть дальше себя, и поскольку этот навык возникает в лобной и префронтальной долях, требуется время для его развития. Динамические изменения, происходящие в мозге, наполняют подростковый период энтузиазмом и подъемом. Но податливый, еще растущий подростковый мозг может быть страшной проблемой. Может случиться все что угодно – по большей части нехорошего. Подростки могут выглядеть как взрослые, они могут даже во многом думать как взрослые, и их способность к обучению ошеломляет. Но знание, что подростки не в состоянии понять свои когнитивные, эмоциональные и поведенческие ограничения, – является критически важным.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21 
Рейтинг@Mail.ru