bannerbannerbanner
Горизонты будущего

Евгений Кузьменков
Горизонты будущего

Полная версия

Отказ от космоса неизбежно приведёт к деградации человечества, к архаизации картины мира. Отказ от космоса является одним из следствий глобального кризиса капитализма.

И вот нам кажется, что нет выхода из этого мировоззренческого тупика. Накопление знаний о дальних галактиках, глубинах космоса всё более унижает человека, делает его всё более ничтожным элементом Вселенной. В этот момент вдруг, сквозь хаос накопленной информации, появляется проблеск красивейшей картины мира, в которой человек занимает не случайное, а центральное положение. Однако это положение является центральным не в обычном и привычном для всех трёхмерном пространстве, а в иерархическом мироустройстве.


Рис. 28. Масштабный интервал размеров объектов Вселенной [от фундаментальной длины М. Планка 10-32.8 см до расположенной на масштабной оси (М-оси) Метагалактики]. МЦВ – масштабный центр. В начале 70-х годов двадцатого столетия Сергей Иванович Сухонос [6, 7, 8] обнаружил удивительные закономерности масштабного устройства Вселенной.

Можно назвать его масштабным пространством. Чтобы понять, насколько важен для всех нас этот объективный научный факт – центральное положение жизни в масштабном пространстве, необходимо сначала показать, что это пространство играет во Вселенной главенствующую роль и что события, происходящие по законам трёхмерного пространства, являются лишь следствием причин, которые зарождаются в этом неизвестном пока для нас измерении.

Самым же волнующим было то, что основные параметры человека идеально точно соответствуют наиболее функционально важным закономерностям масштабной гармонии Вселенной. Это открывало невероятно плодотворный путь к постижению места человека в мироздании. Приведём некоторые результаты исследования С.И. Сухоноса [6, 7, 8].

Ровно сто лет назад М. Планком в докладе на заседании немецкой Академии наук были впервые предложены так называемые планковские величины, в частности ставшая с тех пор знаменитой планковская длина:

= ≈ 10-33 см,                                                (18)

где ћ – постоянная Планка, G – гравитационная постоянная, с – скорость света. Этот размер представляет собой некий предельно допустимый минимальный размер, на масштабе которого ещё действуют известные нам законы физики. Проникновение же в структуру материи глубже либо вообще невозможно, либо требует создания новой физики. В любом из этих вариантов планковская длина является фундаментальной нижней границей нашего мира.

Со стороны мегамасштабов проникновение астрономии во все более удалённые уголки Вселенной привело к тому, что удалось увидеть границы Метагалактики на расстояниях порядка 1028 см. Итак, в ХХ веке наука сумела на многие порядки раздвинуть масштабные границы нашего мира. При этом оказалось, что наш мир ограничен не только в размерах, но и в масштабах. Если есть какие-либо границы, то, безусловно, крайне любопытно узнать, что же находится в центре между ними? Другими словами, где расположен масштабный центр Вселенной?

При этом необходимо помнить, что традиционное представление о середине мира здесь не может быть использовано, ведь речь идёт не о привычном пространственном кубике, в центре которого пересекаются диагонали. Вопрос ставится иначе. Найти между масштабными границами середину – значит подобрать объекты «срединного масштаба», т.е. такие, которые были бы во столько раз больше фундаментальной длины, во сколько раз они меньше самой Вселенной.

На первый взгляд в этом поиске нет физического смысла, ведь объектов с такими размерами может быть во Вселенной огромное множество. Точка в центре этого отрезка имеет значение 10–2,3 см или 5 • 10–3 см, т.е. около 50 микрон. Полученное значение, во-первых, радует своей доступностью (такие объекты можно разглядеть в обычный микроскоп), а во-вторых, удивляет своей точностью.

Ведь границы – Бог знает где! Одна – за пределами возможностей телескопов, другая – на самом дне микромира, а здесь – 50 микрон. В живой природе в этом выделенном центральном месте всего масштабного интервала нашего мира находится биологическая клетка в её среднегеометрическом размере. Причём важно отметить, что этот среднегеометрический размер свойствен всем видам ядерных клеток: одноклеточным, растительным и животным.

Что такое жизнь? Жизнь – это Божественная энергия, которая из материи строит формы для своего проявления. Это та сила космического вихря, которая быстро соединяет и комбинирует химические элементы, образуя из них живые организмы. Эти формы строятся из всевозможных комбинаций ранее созданных химических элементов. Каждая форма существует лишь до тех пор, пока Жизнь удерживает материю в этой форме.

В плазменном вихре многократно возникали явления рождения и роста, увядания и смерти. Организм рождался, потому что Жизнь имеет цель совершить определённую эволюционную работу в нём. Первая живая клетка, способная к самовоспроизведению, росла по мере того, как работа шла к своему завершению. То, что представлялось смертью организма, было не что иное, как удаление из него жизни.



Рис. 29. Масштабные границы Вселенной. В центре масштабного интервала находится живая клетка, которая во столько раз больше мельчайшей частицы Вселенной – максимона, во сколько раз она меньше её верхней границы – Метагалактики.

В течение некоторого времени эта жизнь существовала вне материи в виде генетической памяти. Этот опыт, в виде новых комбинаций, переплавлялся в новые созидательные способности, которые обнаруживались при последующих условиях жизни организма. Хотя растение умирало, жизнь, которая её оживотворяла и побуждала реагировать на воздействие окружающего мира, не погибала. Когда роза вянет, мы знаем, что из её материи ничто не пропадает – каждая частица её продолжает существовать, ибо материя не может уничтожиться.

То же происходит и с жизнью организмов. Она временно отступает, чтобы потом вновь проявиться и построить новую особь. Опыт, который она приобрела относительно лучей Солнца, бурь и борьбы за существование в первой особи, используется ею для построения другой особи. Новая особь будет лучше приспособлена к жизни и распространению своего вида. В природе не существует того, что называется смертью, если под смертью понимать растворение в Небытии. Жизнь на время удаляется в свою первичную среду, сохраняя в виде новых способностей творчества результаты опыта, через который она прошла. Формы, которые возникают и погибают одна за другой, представляют собой как бы двери, через которые жизнь то проявляется, то исчезает с исторической сцены.

Ни одна доля опыта не теряется, так же как не теряется ни единая частица материи. Сверх того, эта жизнь эволюционирует, и её эволюция происходит посредством форм. Таким образом, жизнь следует эволюции, она постепенно становится всё более сложной и совершенной, превращаясь, в конце концов, в Бога.

Биосфера – это чудо мироздания, это мир живых существ нашей планеты, она является колоссальным вызовом смерти. В этой борьбе против смерти биосфера похожа на гигантское древо жизни, которое зимой, чтобы выжить, теряет листья. А листья – это бесчисленные индивидуумы, бесчисленные виды, роды, классы живых существ. Они гибнут, но мощное древо биосферы, мощное древо жизни остаётся неколебимым.

Потому что незримые узы связывают деревья и обитателей морских глубин, человека и мельчайшее насекомое, гигантского обитателя моря и то существо, которое мы можем видеть только под микроскопом. Единая структура жизни заложена во всю биосферу. Она работает по единой схеме, по единому генетическому принципу. И построена биосфера на основании тех элементов, которые она уже нашла в природе. Среди царства биосферы в настоящее время зародилось новое царство, которое Вернадский назвал ноосферой, сферой разума (от греческого noos – мышление, разум).

Ноосфера обладает удивительным свойством: она берёт за основу творчество, нравственный выбор, глубинное самосознание, стремление к бессмертию. Когда самка осьминога откладывает яйца, она убивает саму себя, для чего у неё имеется определённая железа, которая уносит её из жизни. Почему это так? Она выполнила своё предназначение. То же самое происходит со многими живыми существами. Кто видел над вечерней рекой кружащиеся стаи полупрозрачных лёгких стрекоз-подёнок, наверно, думал: что это за праздник и танец? А это праздник любви и смерти. Ибо рождаются эти подёнки даже без ротового отверстия, они даже не могут поесть. Их единственное призвание в этот единственный вечер их жизни, когда они выходят из воды, из личинок, – чтобы плясать в воздухе, спариться, дать начало новой генерации и в этот же день погибнуть. А утром на поверхности реки можно увидеть целые серебристые пласты этих погибших насекомых. Они выполнили своё земное предназначение.

Исследователи выяснили, что человек на 97% состоит из вещества, созданного в недрах звёзд. Выводы были получены на основе анализа 150 тыс. светил. Тезис о том, что человек и все земные объекты состоят из космического вещества, совсем не нов. Об этом, в частности, говорил известный американский астроном и популяризатор науки Карл Саган. Однако сейчас астрономы из США смогли более точно выяснить происхождение атомов человека. Новые результаты, полученные в рамках масштабного проекта «Слоановский цифровой обзор неба (SDSS)», были представлены на встрече Американского астрономического общества.

Большая часть самых важных химических элементов, лежащих в основе жизни на Земле, появилась в недрах светил. Учёные даже придумали специальную аббревиатуру – CHNOPS, включающую углерод (C), водород (H), азот (N), кислород (O), фосфор (P) и серу (S). Сейчас, используя SDSS, астрономы измерили концентрацию этих элементов в 150 тысячах светил нашей Галактики. Это было сделано при помощи анализа спектров светил. Расщепив свет далёкой звезды в спектрографе и проанализировав линии отдельных элементов в полученном спектре, учёные смогли выяснить содержание тех или иных атомов в недрах звезды.

 

Задача была выполнена при помощи спектрографа APOGEE, который установлен на телескопе Apache Point. Оказалось, что человек на 97% состоит из вещества, которое появилось в недрах светил. Исследование также является чрезвычайно важным для понимания природы Млечного Пути. Так, учёные пришли к выводу, что внутренние области нашей родной Галактики имеют больше тяжёлых элементов. Это обусловлено тем, что там находятся более старые светила, которые в ходе своей эволюции наработали больше тяжёлых элементов, чем более молодые звёзды внешних частей Галактики.

Сейчас очевидно, что для Солнечной системы в прошлом не было возможности получить вещество из других звёзд. Следовательно, их образование является результатом сброса с поверхности Солнца. Новые данные также позволили учёным лучше понять то, откуда на нашей планете появился тот или иной химический элемент.

Велик Дух и сознание человека, в нём заложено много дарований, которые нужны ему для приспособления к окружающей среде. Стремление к высшему познанию, стремление к бескорыстной божественной любви, самые необходимые способности, присущие гению человека, несомненно, нужны для выживания людей. Более того, именно владея этими дарами, человек часто подвергает себя самозабвенно и опасности, и даже угрозе смерти.

Так создаётся новый сверхчеловек. Это природа за счёт опережающего отражения действительности дала человеку оружие для будущих земных испытаний. Жизнь животного, хотя и имеет в себе простейшие элементы психики и сознания, является отражением его телесной жизни. И когда животное удовлетворило потребности телесной жизни, элементарные потребности психической жизни, ему больше ничего не надо, животное спокойно.

Так, немецкий исследователь Шаллер, живя в лесу с гориллами, высокоразвитыми живыми существами, поразился, насколько они неизобретательны, флегматичны и даже безынициативны. Потому что у них нет врагов, им не от кого прятаться. У них пища всегда в изобилии. У них, как бы мы теперь сказали, решены все основные проблемы потребления, и поэтому жизнь их проходит в таком сонном состоянии. Но если человек удовлетворил свои потребности, если он одет, сыт, если всё у него есть, если он нормальный человек, он не должен успокоиться.

Величайшее значение «Фауста» Гёте заключается в красноречивом утверждении этого факта. Мефистофель слишком низко оценивал человека. Что он обещал доктору Фаусту? Молодость, любовь, богатство, власть, славу. Всё это он дал. Но никогда, ни на одно мгновение Фауст не успокоился. И только в конце дней своих он почувствовал драгоценность мгновения, когда он стал отдавать, когда стал служить другим людям. Напрасно Мефистофель думал, что он выиграл пари.

Бессмертная часть Фауста уносится в небо, как пишет Гёте в конце своей трагедии. А Мефистофель оказывается обманутым. Потому что тот, кто не для себя искал счастья, тот оказывается победителем низших начал. Человек – «мятежный, ищет бури», и если успокаивается, то деградирует. Человек – часть ноосферы. Он подобен стреле, запущенной в вечность.

Нет сомнения в том, что жизнь возникла при переходе химической эволюции вещества к эволюции биологической. Однако время и место этого перехода представляют собой проблему, к решению которой учёные реально подошли только в последние годы. Как отметил видный палеонтолог, академик РАН Б.С. Соколов: «Даже на вопрос, что древнее: Земля или жизнь на ней, – строго говоря, нет определённого ответа». По его мнению, возможно, они ровесники, возможно – жизнь древнее планеты.

Сравнительно недавно появились представления о необычайной длительности формирования жизни на Земле. Их высказывали В.И. Вернадский, Л.С. Берг, Л.А. Зенкевич. В частности Л.С. Берг в 1947 году писал: «Действительно, вряд ли хватит трёх-четырёх миллиардов лет, чтобы на Земле не только зародилась жизнь, но чтобы она могла дать начало всему тому разнообразию органического мира, какое мы встречаем в настоящее время. Вспомним, что на эволюцию одного подтипа животных – позвоночных – ушло около полумиллиарда лет. Сколько потребовалось времени для образования первичных хордовых, для иглокожих, для моллюсков, членистоногих, червей и так далее. Какой промежуток времени употребила природа, чтобы образовать группу одноклеточных организмов, включающих в себя не только несколько типов, но одновременно животных и растения? Сколько времени нужно было, чтобы из бесформенного клочка живого вещества получил начало первичный оформленный организм?».

Сочетание недавно полученных микропалеонтологических, биогеохимических и изотопных данных упорно свидетельствуют о том, что жизнь на Земле существовала столько времени, сколько существовала и сама наша планета.

Это заключение подтверждает на современном научном материале выдающееся обобщение В.И. Вернадского, который писал: «Для нашей планеты эмпирически установлено существование жизни в самых древних нам доступных отложениях. Даже массивные породы носят в себе несомненные следы существования живого вещества. Жизнь на Земле геологически вечна». Где же могла природа столь ускорить процессы зарождения живых организмов?

Исследователь из Техасского технологического университета после анализа огромного объёма собранной информации выдвинул теорию о том, как же на Земле смогла образоваться жизнь.

Учёный уверен, что появление ранних форм простейшей жизни на нашей планете было бы невозможно без участия упавших на неё комет и метеоритов. Своей работой исследователь поделился на 125-й ежегодной встрече геологического общества Америки, проходившей в городе Денвер, Колорадо.

Автор работы, профессор геологии в Техасском технологическом университете (ТТУ) и куратор музея палеонтологии при университете, Санкар Чаттерджи рассказал, что к такому выводу он пришёл после анализа информации о ранней геологической истории нашей планеты и сопоставления этих данных с различными теориями химической эволюции. Эксперт считает, что такой подход позволяет объяснить один из самых скрытых и не до конца изученных периодов в истории нашей планеты. По мнению многих геологов, основная масса космических «бомбардировок», в которых участвовали кометы и метеориты, приходилась на время около четырёх миллиардов лет тому назад. Чаттерджи считает, что самая ранняя жизнь на Земле образовалась в кратерах, оставленных при падении метеоритов и комет. И вероятнее всего это произошло в период «Поздней тяжёлой бомбардировки» (3,8-4,1 миллиарда лет назад), когда столкновение мелких космических объектов с нашей планетой резко возросло. На то время приходилось сразу несколько тысяч случаев падения комет.

Чаттерджи указывает, что образовавшиеся в результате этих столкновений кратеры заполнились растаявшей водой из самих комет, а также химическими строительными блоками, необходимыми для образования простейших организмов. С учётом истинной продолжительности Дня Творения по Божественным часам видим, что последовательное зарождение и развитие жизни ускоренно протекало в космическом пространстве, а затем на Земле ускорилось эволюционным путём. Эту мысль ярко выразил французский натуралист Ж. Кювье (1769-1832): «Жизнь представляет более или менее сложный вихрь, направление которого постоянно и который всегда захватывает молекулы, так что форма живого тела для него существеннее, чем его вещество. Пока это движение существует, тело живёт». Здесь Кювье прозорливо указал на животворный плазменный вихрь, который мог быть только в космическом пространстве.

Жанн Батист Ламарк считал, что лестница существ есть следствие эволюции живых организмов от низших микроскопических к высшим. Он полагал, что причиной эволюции является присущее живым организмам свойство – стремление к совершенству. В своём выдающемся труде «Происхождение видов путём естественного отбора» (1859) Чарльз Роберт Дарвин выдвинул три основных фактора, определяющих эволюцию жизни: изменчивость, наследственность и естественный отбор.

Именно так происходила эволюция жизни: сначала ускоренно в условиях космического пространства, а затем на нашей планете. Мы представляем картину возникновения жизни как единый процесс космической и земной эволюции. При этом огромную роль играли вихри плазменного вещества. Как на Земле, так и на Солнце вихри в северном его полушарии имеют левое вращение, в южном – правое. Для возникновения предшественников жизни были все необходимые условия только в вихрях левого вращения. Особую роль играл переход от сверхвысоких температур разогретой плазмы к сверхнизким температурам.

Мы полагаем, что жизнь зародилась до основания Земли в условиях вихревых плазменных потоков вещества, в котором содержались водород, окись углерода, метан, соединения азота и вода в достаточных количествах. При температурах ниже 800°С совершались чрезвычайно бурные реакции между водородом, окисью углерода и простейшими соединениями азота. Эти реакции протекали ускоренно в присутствии катализаторов: магнетита и гидратированных силикатов.

Наличие подобных шариков в коридоре падения Тунгусского феномена свидетельствует о том, что в вихревом уединённом вихре продолжались процессы образования минералов, органики и живых веществ. Исследования показали, что входящие в их состав органические соединения обычно синтезируются на поверхности силикатных зёрен и магнетита в среде плазменного вихря. Так, под микроскопом было обнаружено наличие значительного количества органических веществ в виде округлённых флюоресцирующих частиц с диаметром от 1 до 3 микрон.

Маленькие ядрышки магнетита или гидратированных силикатов обнаружены в центре этих частиц. Вместе с тем, плазменное тело обладало живительной силой, следствием чего в результате Тунгусского феномена стал ускоренный рост деревьев в этом районе (как молодых, так и переживших катастрофу) и резко (в 12 раз!) возросла частота мутаций у местных сосен [9]. Несомненно, что в недрах плазменного вихря были все необходимые условия для протекания процессов синтеза органических соединений и одноклеточных живых организмов.

Внутри плазменного вихревого самоорганизующегося потока образовались нежёсткие связи, которые подчиняются особой, квазигиперболической статистике микроскопических частиц. Эта статистика значительно отличается от обычной, «гауссовской». Как и вихревой плазменный поток в целом, так и квазигиперболические системы внутри его всегда способны к самоорганизации. Итогом любой самоорганизации является естественный отбор.

В процессе фазового перехода из газового состояния в жидкое, а затем и в твёрдое состояние, возникали центры кристаллизации в виде флюоресцирующих шариков магнетита или гидратированных силикатов, сформировавшихся значительно раньше. Самоорганизация производит красоту, а красота в плазменном вихревом потоке создаёт жизнь. Вот почему красота спасёт мир. Ажурная симметрия одинакова во всех частях новообразований. Так и в плазменном вихревом потоке рождались первые минералы, органика и живые клетки из неживого вещества.

Хиральность – одно из наиболее загадочных свойств живой материи. Хиральными называют объекты, которые являются зеркальным отражением друг друга. Впервые о хиральности живой материи заговорил французский естествоиспытатель Луи Пастер (1822-1895) в середине XIX века. Проведённые Пастером эксперименты показали, что некоторые вещества, описываемые одинаковыми химическими формулами, могут иметь разные свойства. Например, при растворении в воде они обладают оптической активностью – то есть вращают плоскость поляризации падающего на раствор света. При этом одно и то же вещество в каких-то случаях вращает плоскость поляризации по часовой стрелке, а в каких-то – против.

Голландский химик Вант-Гофф (1852-1911) доказал, что такое различие обусловлено разным пространственным расположением атомов в молекуле вещества. При обычном химическом синтезе «правые» и «левые» молекулы образуются в одинаковых количествах, и соответствующее вещество оказывается оптически неактивным. В случае же живых организмов образуются асимметричные соединения: аминокислоты и сахариды встречаются в природе только в какой-то одной из двух зеркально симметричных форм. Так, большинство аминокислот, из которых построены белки человеческого организма, являются «левыми» формами. В результате сделанного Пастером открытия проблема происхождения жизни вышла на молекулярный уровень. Необходимо было понять, по какой причине появившиеся на Земле живые организмы оказались связанными только с одним из двух абсолютно равнозначных способов взаимного расположения атомов в пространстве.

Ещё в 1998 году группа астрономов под руководством Джереми Бейли из университета Нового Южного Уэльса в Сиднее изучала туманность Ориона и обнаружила, что определённые участки туманности заполнены поляризованным по кругу электромагнитным излучением инфракрасного диапазона. Подобное излучение имеется и в окрестностях нашего Солнца.

 

Взаимодействуя с атомами, поляризованное по кругу излучение может их разрушить. В зависимости от направления поляризации – вправо или влево – оно разрушает либо «правые», либо «левые» молекулы. Соответственно, в тех участках туманности Ориона, которые исследовал Бейли и его коллеги, будет преобладать только один вид аминокислот: либо «левые», либо «правые».

Точно такая же ситуация могла сложиться в той области космического пространства, в которой происходили вихревые выбросы солнечного вещества. В этом случае асимметрия молекул живого вещества на Земле получает вполне адекватное объяснение.

Реакции ускорялись также за счёт ионизирующей радиации. Такая радиация возбуждала многие химические реакции, включая ускоренное образование молекул, способных к самовоспроизведению. Быстрая эволюция первых форм микроскопической жизни возникла до образования Земли в космических условиях благодаря вихревому выбросу материи из Солнца и её быстрому и глубокому охлаждению, что надёжно сохраняло упавшие «семена жизни» во многих местах атмосферы и поверхности Земли, что обеспечило их параллельное развитие и разнообразие форм.

Спектр солнечной вспышки представляет собой яркие эмиссионные линии водорода, гелия, ионизованного кальция и других элементов. В составе солнечного вещества выделяется одна наиболее яркая зелёная линия, которая принадлежит атому железа, лишённому 13 электронов. Практически с самого начала на Солнце в малых количествах уже существуют химические элементы всей таблицы Менделеева, в том числе и с высоким атомным весом, что достаточно для редких выбросов плазменным вихревым потоком, создающим живое вещество.

Химический элементарный состав живого вещества включает в себя около 60 элементов, атомы которых создают в живых организмах сложные молекулы в сочетании с водой и минеральными солями. Эти молекулярные постройки представлены углеводами Cn H2n On, липидами – жироподобными веществами, белками (сочетание 20 различных аминокислот) и нуклеиновыми кислотами (ДНК и РНК). Нуклеиновые кислоты регулируют естественный синтез белка в организмах и осуществляют передачу наследственной информации из поколения в поколение.

Древнейшая жизнь существовала в качестве гетеротрофных бактерий, получавших пищу и энергию от органического материала абиогенного происхождения. В свете новых данных неизбежно следует вывод о раннем зарождении жизни в процессе формирования Солнечной системы в космических условиях. Древнейшими в геологической истории нашей планеты были прокариоты, следы жизнедеятельности которых выявлены в древнейших докембрийских отложениях земной коры.

Прокариоты подразделяются на подцарства бактерий и сине-зелёных водорослей. Бактерии представляют собой наиболее распространённые в биосфере организмы. Самые мелкие шаровидные бактерии имеют диаметр менее 0,1 мкм. Подавляющее большинство бактерий имеет формы прямых и изогнутых палочек толщиной в пределах 0,5-1 мкм и длиной 2-3 мкм.

Основным направлением эволюционного процесса являются биологический прогресс и регресс. Это означает либо успех данной группы живых организмов, либо упадок. При успехе живых организмов наблюдается увеличение их численности, расширение ареала обитания. Вместе с успехом приходит видоизменение и адаптация к новым условиям. Упадок данной группы живых организмов свидетельствует об их неспособности приспособиться к изменениям условий среды. В процессе эволюции многие виды обнаруживали заметный прогресс, который затем сменялся регрессом.

Обратимся к рассмотрению исторических памятников, оставленных нам в назидание Господом Богом в древних пластах Земли. Изучая последовательно слои пород в Южной Англии, У. Смит в 1794 году установил, что в каждом слое содержатся характерные окаменелые останки животных, отсутствующие в других слоях. Это открытие позволило строить карты, на которых показывались характерная жизнь в далёкие исторические времена.

В осадках, превращающихся в породы, часто хорошо сохраняются останки животных и растительных организмов. Они свидетельствуют, что условия жизни на Земле с течением времени меняются. Вместе с изменением геологической обстановки видоизменяется растительный и животный мир. Одни растения и животные вымирали, на смену им приходили видоизменённые формы, приспособившиеся к новым условиям. При этом более простые формы легче переносили изменения условий жизни. Поэтому современные простейшие организмы мало отличаются от древних. Другие организмы, приспособленные только к специфическим условиям той или иной геологической эпохи, вымирали вслед за изменением обстановки. Таким образом, геологические эпохи характеризуются теми или иными видами животного или растительного мира.

Вместе с тем, новые виды, размножаясь, сами стали активно влиять на условия обитания, чем увеличивали длительность существования своих популяций. Французские химики Ж.Б. Дюма (1800-1884), Ж. Бусенго (1802-1887), немецкий химик Ю. Либих (1803-1873) и некоторые другие исследователи выяснили значение зелёных растений в газовом обмене земного шара и роль почвенных растворов в питании растений. Было установлено исключительное значение углекислоты и воды в образовании зелёных растений и вообще живых организмов.

Французский натуралист Ж.Б. Ламарк (1744-1829) писал: «В природе существует особая сила, могущественная и непрерывно действующая, которая обладает способностью образовывать сочетания, умножать их, разнообразить их…». Далее Ж. Ламарк отмечал, что «влияние живых организмов на вещества весьма значительно, потому что эти существа, бесконечно разнообразные и многочисленные, с непрерывно сменяющимися поколениями, покрывают своими постоянно накапливающимися и всё время отлагающимися останками все участки земного шара».

По своей сути эволюция – это своеобразное развитие Царства Божия на Земле. Применение идеи эволюции в палеонтологии позволило достаточно точно оценить продолжительность Дней Творения и создать всемирную шкалу относительного геологического времени, то есть создать геохронологию Земли [11]. В этой шкале наиболее крупные отрезки времени, характеризующие развитие одних и вымирание других организмов, именуются эрой, а отложения, образовавшиеся за соответствующую эру, – группой.

Самая древняя эра – архейская – предполагалось ранее отсутствие в её породах достоверных органических останков. Однако впоследствии было доказано наличие в этих слоях микробиологической жизни. За архейской эрой следуют протерозойская (первичной жизни), палеозойская (древней жизни), мезозойская (средней жизни), кайнозойская (новой жизни). В самый поздний период кайнозойской эры (четвертичный) появился человек. Всемирная шкала относительного геологического времени ясно показывает, что по сравнению с другими видами живых организмов человечество, как вид, находится ещё на самой ранней стадии младенчества и ему предстоит жить, развиваясь и совершенствуясь, в течение многих сотен миллионов лет в будущем.

Жизнь на Земле однотипна в том смысле, что генетический код любого организма, любого биологического вида собран из сходных органических соединений. Все живые существа на Земле – родственники, происходящие от простейших микроорганизмов, «семян жизни».

Главное направление, ось эволюции – это и есть ствол генеалогического древа жизни, путь усложнения клеточных структур, нервной системы, головного мозга. Организмам присуще стремление к осуществлению заложенной в каждом из них цели, наилучшего приспособления к внешним условиям. Они способны переносить широкий диапазон физических условий: от температуры около абсолютного нуля до примерно ста градусов по Цельсию, высокие дозы электромагнитной и корпускулярной радиации, то есть условия, характерные для остывающего плазменного вихря в космическом пространстве.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44 
Рейтинг@Mail.ru