На протяжении поколений культурная эволюция порождает обширный и в потенциале вечно пополняющийся корпус знаний о растениях и животных. Эти знания, как мы видели на примере пропавших первопроходцев-европейцев, необходимы для выживания. Поскольку знания так важны, нам следует ожидать, что люди с юных лет снабжены психологическими способностями и мотивацией приобретать, хранить, организовывать, расширять (через умозаключения) и передавать эти сведения. В сущности, мы, люди, обладаем потрясающей фолк-биологической когнитивной системой, позволяющей работать с информацией о растениях и животных. Психологи и антропологи, в том числе искрометный дуэт Скотт Атран и Даг Медин, провели обширные исследования в разнообразных человеческих популяциях и показали, что у этих когнитивных систем есть несколько интересных свойств. Дети быстро сортируют информацию о растениях и животных по (1) сущностным категориям (например, “кобры” и “пингвины”), встроенным в (2) иерархические (древовидные) таксономии, позволяющие делать умозаключения с использованием (3) основанной на категориях индукции и (4) таксономического наследования.
Илл. 5.4. Схема, иллюстрирующая разные стороны фолк-биологического мышления
Все это высокоумные термины из области когнитивистики, однако за ними стоят интуитивно понятные идеи. Применяя сущностные категории, обучающиеся имплицитно предполагают, что принадлежность к категории (скажем, “кошки”) – результат наличия какой-то скрытой глубинной сущности, общей для всех членов. Эту сущность невозможно уничтожить поверхностными изменениями. Предположим, вы делаете кошке пластическую операцию, а потом раскрашиваете ее так, что теперь она выглядит в точности как скунс. Кто это – кошка или скунс? Или какое-то новое животное – скунсокошка, котоскунс? И дети, и взрослые обычно говорят, что это по-прежнему кошка, которая сейчас выглядит как скунс. Однако если стол разобрать и собрать из этих деталей стул, никто не думает, что это по-прежнему стол. Он “есть” то, что он “делает”! Применяя индукцию, основанную на категориях, обучающиеся легко экстраполируют сведения об одной кошке на всех кошек: если вы видели, что Феликс на все готов ради кошачьей мяты, вы легко делаете вывод, что все кошки отреагируют на кошачью мяту подобным образом. Эти сущностные категории по мере развития и культурной эволюции организуются во все более сложные иерархические таксономии, как показано на илл. 5.4. Учет подобных таксономий позволяет людям при помощи индукции, основанной на категориях, применять свои знания об одной категории, скажем, “шимпанзе”, чтобы делать выводы о других категориях. Насколько полагаться на подобные умозаключения, зависит от отношений в ментальной таксономии человека. Допустим, зная какой-то факт о шимпанзе (например, что они выкармливают своих детенышей молоком), человек может уверенно предположить, что и волчицы, наверное, выкармливают молоком своих волчат, поскольку и те и другие – млекопитающие. Дерево отношений позволяет нам также пользоваться таксономическим наследованием: обучающиеся знают, что одна из их категорий высшего уровня, например “птицы”, обладает особыми чертами (птицы кладут яйца, и у них полые кости). Затем, столкнувшись с новым типом птиц, скажем, увидев малиновку, они могут легко предположить, что она, вероятно, кладет яйца и у нее полые кости, и им не нужно будет эксплицитно выяснять эти факты о малиновках29.
В различных малых сообществах такие паттерны мышления оказались весьма единообразными, однако стоит отметить, что в фолк-биологической психологии западных городских популяций наблюдаются некоторые отклонения. В малых сообществах люди, как правило, пользуются фокальными категориями – “малиновка”, “волк”, “шимпанзе”, – и дети изучают их первыми (см. илл. 5.4). Однако городские дети и студенты университетов, которых, как правило, изучают психологи, пользуются так называемыми категориями уровня форм жизни – “птица”, “рыба”. Более того, городские жители склонны отталкиваться в рассуждениях от того, что они знают о людях, и экстраполировать это на другие виды, вместо того чтобы помещать людей на надлежащее место в таксономии и обращаться с ними как с остальными животными. Сравнительные исследования детей майя, а также американцев из сельской местности показывают, в чем тут дело: городские дети получают очень мало культурной информации о растениях и животных, поэтому единственные живые существа, о которых они много знают, – это люди. В сущности, урбанизированные западные фолк-биологические системы так плохо работают из-за скудости вводных данных в ходе когнитивного развития30.
Эта мощная когнитивная система организует огромный корпус сведений, которые отдельные люди постепенно, за всю жизнь набирают как через культурную передачу, так и на личном опыте31. Естественно, большинство знаний о растениях и животных, которыми обладают люди, попадает к ним через культурную передачу.
Чтобы увидеть, как действует эта система, рассмотрим реакцию очень маленьких детей на незнакомые растения. У растений постоянно встречаются острые шипы, едкие масла, жгучие листья и ядовитые соки, и все это возникло в ходе эволюции, чтобы отпугивать животных вроде нас. Учитывая широкую географическую распространенность нашего вида и разнообразное использование растений в пищу, в качестве лекарств и в строительстве, мы должны от природы быть настроены как на изучение растений, так и на уклонение от их опасных свойств. Чтобы исследовать эту гипотезу в лаборатории, психологи Анни Верц и Карен Уинн сначала дали детям от 8 месяцев до полутора лет возможность потрогать незнакомые растения (базилик и петрушку) и разные артефакты, как незнакомые, так и привычные, вроде деревянных ложек и маленьких лампочек.
Результаты поражали воображение. Независимо от возраста многие дети наотрез отказывались прикасаться к растениям. Если же прикасались, то решались на это значительно дольше, чем в случае артефактов. Напротив, с предметами, даже с незнакомыми, дети не проявляли подобной нерешительности. Из этого следует, что даже в возрасте гораздо меньше года дети хорошо отличают растения от всего остального и настроены вести себя с ними осторожно. Как же они преодолевают подобные консервативные предубеждения?
Дело в том, что дети внимательно наблюдают, что делают с растениями другие люди, и склонны трогать и есть только те растения, которые при них уже трогали и ели другие. Более того, как только дети получают сигнал “можно” через культурное обучение, им вдруг становится интересно пробовать растения на вкус. Чтобы это исследовать, Анни и Карен показали младенцам, как другие люди – модели – собирали плоды с растений, а также собирали предметы, похожие на плоды, с артефакта, похожего формой и размером на растение. Модели клали в рот и плоды, и предметы, похожие на плоды. Затем детям давали на выбор плоды (собранные с растения) или предметы, похожие на плоды, собранные с артефакта. Более чем в 75 % случаев младенцы предпочитали плоды, а не предметы, похожие на плоды, поскольку получили сигнал “можно” через культурное обучение.
В качестве проверки детям показали, как модели кладут плоды и предметы, похожие на плоды, себе не в рот, а за уши. В этом случае дети выбирали плоды и предметы, похожие на плоды, с одинаковой частотой. Похоже, растения наиболее интересны, если их можно есть, но только при условии, что располагаешь данными культурного обучения и знаешь, что они не ядовиты32.
Когда Анни рассказала мне о своих находках во время моего визита в Йельский университет в 2013 году, я вернулся домой и тут же провел этот эксперимент на своем полугодовалом сыне Джоше. Мне казалось, что Джош тут же опровергнет все результаты тяжких эмпирических трудов Анни, поскольку в то время он хватал и тащил в рот все, что ему давали. Джош уютно устроился у мамы на руках, а я протянул ему новый пластиковый кубик, который он еще не видел. Джош с восторгом схватил его и тут же, не раздумывая, сунул в рот. Тогда я дал ему листик рукколы. Он тут же схватил его, но потом замер, посмотрел на него с неуверенным любопытством, а затем медленно разжал пальцы, выронил листик на пол и повернулся, чтобы прижаться к маме.
Здесь масса поводов для психологических размышлений, и на них стоит остановиться. Младенцы не просто должны отличать растения от предметов того же цвета, формы и размера, им нужно еще и создать категории для типов растений, например базилика и петрушки, и понимать, что одни можно “есть”, а другие только “трогать”. При этом из того, что кто-то ест базилик, не следует делать общий вывод “растения можно есть”, ведь это подтолкнет к тому, чтобы есть не только базилик, но и ядовитые растения. Но мало толку и от узких, слишком конкретных выводов наподобие “этот листик базилика можно есть”, поскольку этот листик базилика только что был съеден человеком, за которым младенец наблюдал33. Вот очередной пример тематической избирательности в культурном обучении.
Генетическая эволюция нашего большого мозга, затяжного детства, короткого кишечника, маленького желудка, крошечных зубов, гибкой выйной связки, длинных ног, пружинистых стоп, ловких рук, легких костей и жирных тел направлялась кумулятивной культурной эволюцией – растущим корпусом сведений, хранящихся в умах других людей. Культура формировала генетическую эволюцию не только нашего тела, но и нашего разума и психологии, и мы только что увидели это на примере того, как люди узнают нужные сведения об артефактах, животных и растениях. Из главы 7 мы узнаем, как формировавшееся тысячелетиями приспособление к окружающему миру, полному сложных и тонких культурных адаптаций, в число которых входят орудия, приемы и рецепты, подарило нашему виду склонность всецело полагаться на культурную информацию и часто предпочитать ее собственному непосредственному опыту и врожденной интуиции. А в дальнейших главах мы исследуем, как культурная эволюция сказалась на генетической эволюции психологии статуса, коммуникативных способностей и социальности, что в конце концов одомашнило нас и превратило в единственное ультрасоциальное млекопитающее. Однако, прежде чем ступить на этот путь, я хочу развеять всякие оставшиеся у вас сомнения, что культура способна вызывать генетические изменения.
Если нарисовать карту мира по цвету глаз, не учитывая миграции людей в последние несколько столетий, будет заметно, что светлые глаза, голубые и зеленые, распространены только в регионе вокруг Балтийского моря в Северной Европе. Почти у всех остальных на планете глаза карие, и это веская причина предположить, что карие глаза до появления такого распределения были у всех или почти у всех. Но тогда возникает вопрос: почему светлые глаза распределены так странно?1
Чтобы это понять, надо сначала подумать о том, как культура за последние десять тысяч лет повлияла на гены, отвечающие за цвет кожи. В наши дни накоплено достаточно данных, показывающих, что тон цвета кожи у разных популяций на планете, от темного до светлого, – это генетическая адаптация к тому, насколько часто человек подвергается воздействию ультрафиолетового излучения, как длинноволнового, так и коротковолнового, и насколько это излучение интенсивно. Ближе к экватору, где круглый год солнечно, естественный отбор благоприятствует темной коже, что и видно у популяций, живущих у экватора в Африке, Новой Гвинее и Австралии. Это потому, что ультрафиолетовое излучение, как длинноволновое, так и коротковолновое, если его не блокирует меланин, разрушает фолиевую кислоту в нашей коже. Фолиевая кислота необходима во время беременности, ее недостаток приводит к тяжелым врожденным порокам вроде spina bifida. Именно поэтому врачи настоятельно рекомендуют беременным принимать фолиевую кислоту. Мужчинам фолиевая кислота нужна для выработки спермы. Чтобы предотвратить потерю фолиевой кислоты, необходимой для деторождения, надо добавить в эпидермис защитный меланин, а побочным эффектом этого и становится темная кожа2.
Угроза разрушения фолиевой кислоты из-за сильного ультрафиолетового излучения с удалением от экватора слабеет. Но тут возникает новая проблема, поскольку у людей с темной кожей повышен риск авитаминоза D. Наш организм использует ультрафиолетовое излучение для синтеза витамина D. На высоких широтах защитный меланин в темной коже блокирует слишком много ультрафиолета и тем самым препятствует синтезу витамина D. Этот витамин важен для нормальной работы мозга, сердца, поджелудочной железы и иммунной системы. Если в рационе человека мало других надежных источников этого витамина, то, живя в высоких широтах с темной кожей, он рискует заполучить широчайший диапазон болезней, главная из которых – рахит. Этот ужасный недуг особенно опасен для детей и вызывает мышечную слабость, деформацию костей и скелета в целом, переломы и мышечные спазмы. Поэтому при жизни в высоких широтах естественный отбор благоприятствует генам, которые отвечают за более светлую кожу. А поскольку мы – культурный вид, неудивительно, что многие популяции охотников-собирателей, живущие в высоких широтах (выше широты 50° – 55°), например инуиты, в ходе культурной эволюции выработали адаптивный рацион, основу которого составляет рыба и морские животные, поэтому естественный отбор на снижение уровня меланина в их коже был слабее, чем в популяциях, где недоставало таких ресурсов. Если бы эти ресурсы исчезли из рациона северных популяций, отбор в пользу светлой кожи резко усилился бы.
Среди всех регионов земного шара выше 50° – 55°, куда входит, например, основная часть территории Канады, уникальной способностью поддерживать раннее земледелие обладала лишь область вокруг Балтийского моря. Начиная с шести тысяч лет назад культурный пакет из злаковых растений и сельскохозяйственного ноу-хау постепенно распространился с юга и был адаптирован к балтийской экологии. В дальнейшем местные жители стали зависеть в основном от продуктов сельского хозяйства и утратили доступ к рыбе и другим источникам пищи, богатой витамином D, обильные запасы которой издавна были в распоряжении местных охотников-собирателей. Как следствие такого сочетания жизни в высоких широтах и недостатка витамина D, естественный отбор стал активно поддерживать гены, обеспечивавшие очень светлую кожу, чтобы добиться максимального синтеза витамина D при помощи ультрафиолетового излучения.
Естественный отбор среди балтийских народов, питавшихся злаками, мог воздействовать на целый ряд разных генов, чтобы обеспечить очень светлую кожу, поскольку к снижению меланина в нашей коже ведет много генетических путей. Один из таких генов называется HERC2 и находится в пятнадцатой хромосоме. Ген HERC2 ингибирует – то есть подавляет – выработку белка соседним геном под названием ОСА2. Подавление выработки этого белка, осуществляющееся через длинную сложную цепочку биохимических реакций, приводит к снижению меланина в коже человека. Однако, в отличие от других генов, влияющих на другие места этой цепочки, ген HERC2 обычно способствует еще и светлому цвету глаз, поскольку снижает количество меланина в радужной оболочке. То есть голубые и зеленые глаза – это побочный эффект естественного отбора, благоприятствующего светлой коже у популяций, живущих в высоких широтах и питающихся злаками. Если бы культурная эволюция не породила земледелие, а точнее, приемы и технологии, подходящие для высоких широт, у людей не было бы ни зеленых, ни голубых глаз3. А значит, по всей вероятности, этот генетический вариант начал распространяться только в последние шесть тысяч лет, после того как в Балтийский регион пришло земледелие.
Суть этого примера в следующем: культурная эволюция формирует нашу среду обитания, а следовательно, способна направлять генетическую эволюцию. В случае недавней культурно-генетической коэволюции, в ходе которой релевантные гены не настолько распространились, чтобы заместить все или большинство конкурирующих генетических вариантов, мы можем выделить причины и следствия и иногда даже указать на конкретные гены, поддержанные отбором. Это важно, поскольку некоторые исследователи утверждали, что культура никогда не бывает ни достаточно сильной, ни достаточно долговечной, чтобы влиять на генетическую эволюцию. Однако в последнее время новые математические модели и накопившиеся данные о геноме человека дают ясный, пусть и предварительный ответ. Культура не просто довела некоторые гены до высокой частоты в некоторых популяциях в последние десять тысяч лет, но, в сущности, иногда давление отбора, обусловленное культурной эволюцией, сильнее любого природного. Случается, что культура катализирует и направляет ускоренную генетическую эволюцию.
Скажу без обиняков: эта книга – о том, как культура руководила генетической эволюцией во времена становления нашего вида. Она о человеческой природе, а не о генетических различиях между современными популяциями нашего вида. Однако я буду опираться на то, что культурно-генетическая эволюция продолжается и сейчас и многие культурно-генетические взаимодействия у нашего вида идут полным ходом, чтобы проиллюстрировать, как мощно культура влияет на геном. В остальных главах я лишь иногда смогу связать конкретные гены с рассматриваемыми культурно-генетическими коэволюционными процессами. На то есть несколько причин. Во-первых, многие коэволюционные процессы, на которых я останавливаюсь, “завершены”, то есть признаки, подвергшиеся отбору, у нашего вида не варьируют. Это означает, что мы не можем задействовать ни наследственную изменчивость популяций, ни наши сведения о движении популяций по планете, чтобы делать выводы о причинах распространения тех или иных генетических вариантов. Во-вторых, многие человеческие признаки определяются многими генами, расположенными в разных местах наших хромосом. Это сильно затрудняет выделение конкретных генетических вариантов, поскольку воздействие каждого из них по отдельности ничтожно мало. Наконец, подобные исследования только начались, поэтому, хотя общие направления уже ясны, впереди у нас гораздо больше работы.
Рассмотрим еще один пример.
В организме млекопитающих алкоголь из гниющих плодов и других источников расщепляют ферменты, за выработку которых отвечают гены алкогольдегидрогеназы (АДГ), после чего он перерабатывается в энергию и метаболиты в печени. Однако, если темп поступления алкоголя (этилового спирта) в печень слишком высок, алкоголь “хлещет через край”, попадает в сердце, а затем распространяется по всему организму. Наступает интоксикация. Большинство приматов не очень хорошо умеют перерабатывать алкоголь. Однако около десяти миллионов лет назад, когда наш предок, общий с гориллами, спустился с деревьев и начал проводить больше времени на земле, забродившие плоды, вероятно, стали более важным источником пищи, поэтому наши предки-обезьяны в ходе эволюции повысили толерантность к потреблению алкоголя4. Эта древняя адаптация, по всей видимости, задала условия для культурно-генетической коэволюции в самое недавнее время, поскольку многие эволюционные изменения генов, отвечающих за переработку алкоголя, у людей произошли уже после возникновения земледелия.
Рассмотрим только одно из этих генетических изменений. В период от семи до десяти тысяч лет назад один из генов АДГ четвертой хромосомы (ADH1B) чуть-чуть изменился и начал кодировать аминокислоту гистидин вместо аргинина. Данные свидетельствуют, что эта новая версия гена ADH1B метаболизирует алкоголь в печени значительно эффективнее. Но еще важнее, пожалуй, что быстрое расщепление алкоголя дает высокий уровень ацетальдегида, который вызывает дурноту, частое сердцебиение, тошноту, слабость, жар и покраснение кожи. Эти неприятные ощущения повышают устойчивость к алкоголизму – примерно такое же действие оказывают лекарства, применяемые при лечении алкоголизма. Оценки разнятся, но обладание вариантом ADH1B, подавляющим тягу к выпивке, снижает вероятность алкогольной зависимости в несколько раз – от двух до девяти, – а вероятность того, что человек будет склонен злоупотреблять алкоголем в средней или тяжелой степени, примерно в пять раз. То есть более быстрое и полное расщепление алкоголя, которое дает этот генетический вариант, одновременно предохраняет организм от запоев и усугубляет похмелье5. Вы когда-нибудь видели, чтобы человек покраснел, выпив относительно мало? Кто это был?
Данные по гену ADH1B были собраны во всем мире. Оказалось, что вариант этого гена, препятствующий пьянству, распределен вовсе не случайно. Рассмотрим илл. 6.1. Самая горячая точка – юго-восток Китая, вторая, несколько слабее, – на Ближнем Востоке. В Юго-Восточном Китае частотность гена, препятствующего пьянству, доходит до 99 %, а в некоторых популяциях находится в пределах 70 % – 90 %. На Ближнем Востоке частотность держится скорее в пределах 30 % – 40 %6.
Илл. 6.1. Распределение варианта гена ADHiB на планете
Бин Су с коллегами сопоставили эти находки с археологическими данными о происхождении культивации риса в Восточной Азии – о переходе от охоты и собирательства к сельскому хозяйству. Чем раньше в том или ином регионе начали культивировать рис, тем чаще у современного населения этого региона встречается вариант гена ADH1B, препятствующий пьянству. Знание, когда именно в различных областях начали выращивать рис, позволило ученым объяснить 50 % изменчивости по частоте этого гена в азиатских популяциях, что поразительно много, учитывая неточность археологических датировок и все прочие факторы, влиявшие на эти популяции в течение тысячелетий7.
Все это прекрасно, но какова связь между земледелием и алкоголем? Вообще говоря, земледелие и изготовление ферментированных напитков идут рука об руку. Большинство охотников-собирателей не имеют ни средств, ни технологий, ни ресурсов (например, запасов злаков), чтобы изготавливать пиво, вино или крепкие спиртные напитки. А земледельческие популяции обычно этим занимаются, даже совсем маленькие, полукочевые, практикующие подсечное земледелие.
В Китае первые алкогольные напитки появились одновременно с зарождением рисоводства по берегам Хуанхэ. Около девяти тысяч лет назад в древней земледельческой деревне Цзяху, по данным химических анализов, кто-то запас тринадцать глиняных кувшинов с ферментированным напитком на основе риса, в который, вероятно, входили также мед и фрукты8. Похоже, как только люди научились культивировать рис, они быстро поняли, как делать рисовое вино. На основании других исторических эпизодов можно заключить, что это, вероятно, создало некоторые проблемы с алкоголем среди рисоводов, что и способствовало закреплению вариантов АДГ, которые лишали пьянство привлекательности. Без культурной эволюции сначала рисоводства, а затем рисового вина, вероятно, не было бы и никакого варианта ADH1B, препятствующего пьянству.