bannerbannerbanner
полная версияGeological Observations on South America

Чарльз Дарвин
Geological Observations on South America

I have stated that these fringes of gravel, the origin of which are inexplicable on the notion of debacles or of ordinary alluvial action, are directly continuous with the similarly-composed basin-like plains at the foot of the Cordillera, which, from the several reasons before assigned, I cannot doubt were modelled by the agency of the sea. Now if we suppose that the sea formerly occupied the valleys of the Chilean Cordillera, in precisely the same manner as it now does in the more southern parts of the continent, where deep winding creeks penetrate into the very heart of, and in the case of Obstruction Sound quite through, this great range; and if we suppose that the mountains were upraised in the same slow manner as the eastern and western coasts have been upraised within the recent period, then the origin and formation of these sloping, terrace-like fringes of gravel can be simply explained. For every part of the bottom of each valley will, on this view, have long stood at the head of a sea creek, into which the then existing torrents will have delivered fragments of rocks, where, by the action of the tides, they will have been rolled, sometimes encrusted, rudely stratified, and the whole surface levelled by the blending together of the successive beach lines. (Sloping terraces of precisely similar structure have been described by me "Philosophical Transactions" 1839 page 58, in the valleys of Lochaber in Scotland, where, at higher levels, the parallel roads of Glen Roy show the marks of the long and quiet residence of the sea. I have no doubt that these sloping terraces would have been present in the valleys of most of the European ranges, had not every trace of them, and all wrecks of sea-action, been swept away by the glaciers which have since occupied them. I have shown that this is the case with the mountains ("London and Edinburgh Philosophical Journal" volume 21 page 187) of North Wales.) As the land rose, the torrents in every valley will have tended to have removed the matter which just before had been arrested on, or near, the beach-lines; the torrents, also, having continued to gain in force by the continued elevation increasing their total descent from their sources to the sea. This slow rising of the Cordillera, which explains so well the otherwise inexplicable origin and structure of the terraces, judging from all known analogies, will probably have been interrupted by many periods of rest; but we ought not to expect to find any evidence of these periods in the structure of the gravel- terraces: for, as the waves at the heads of deep creeks have little erosive power, so the only effect of the sea having long remained at the same level will be that the upper parts of the creeks will have become filled up at such periods to the level of the water with gravel and sand; and that afterwards the rivers will have thrown down on the filled-up parts a talus of similar matter, of which the inclination (as at the head of a partially filled-up lake) will have been determined by the supply of detritus, and the force of the stream. (I have attempted to explain this process in a more detailed manner, in a letter to Mr. Maclaren, published in the "Edinburgh New Philosophical Journal" volume 35 page 288.) Hence, after the final conversion of the creeks into valleys, almost the only difference in the terraces at those points at which the sea stood long, will be a somewhat more gentle inclination, with river-worn instead of sea-worn detritus on the surface.

I know of only one difficulty on the foregoing view, namely, the far- transported blocks of rock high on the sides of the valley of the Cachapual: I will not attempt any explanation of this phenomenon, but I may state my belief that a mountain-ridge near the Baths of Cauquenes has been upraised long subsequently to all the other ranges in the neighbourhood, and that when this was effected the whole face of the country must have been greatly altered. In the course of ages, moreover, in this and other valleys, events may have occurred like, but even on a grander scale than, that described by Molina, when a slip during the earthquake of 1762 banked up for ten days the great River Lontue, which then bursting its barrier "inundated the whole country," and doubtless transported many great fragments of rock. ("Compendio de la Hist." etc. etc. tome 1 page 30. M. Brongniart, in his report on M. Gay's labours "Annales des Sciences" 1833, considers that the boulders in the Cachapual belong to the same class with the erratic boulders of Europe. As the blocks which I saw are not gigantic, and especially as they are not angular, and as they have not been transported fairly across low spaces or wide valleys, I am unwilling to class them with those which, both in the northern and southern hemisphere "Geological Transactions" volume 6 page 415, have been transported by ice. It is to be hoped that when M. Gay's long-continued and admirable labours in Chile are published, more light will be thrown on this subject. However, the boulders may have been primarily transported; the final position of those of porphyry, which have been described as arranged at the foot of the mountain in rude lines, I cannot doubt, has been due to the action of waves on a beach. The valley of the Cachapual, in the part where the boulders occur, bursts through the high ridge of Cauquenes, which runs parallel to, but at some distance from, the Cordillera. This ridge has been subjected to excessive violence; trachytic lava has burst from it, and hot springs yet flow at its base. Seeing the enormous amount of denudation of solid rock in the upper and much broader parts of this valley where it enters the Cordillera, and seeing to what extent the ridge of Cauquenes now protects the great range, I could not help believing (as alluded to in the text) that this ridge with its trachytic eruptions had been thrown up at a much later period than the Cordillera. If this has been the case, the boulders, after having been transported to a low level by the torrents (which exhibit in every valley proofs of their power of moving great fragments), may have been raised up to their present height, with the land on which they rested.) Finally, notwithstanding this one case of difficulty, I cannot entertain any doubt, that these terrace-like fringes, which are continuously united with the basin-shaped plains at the foot of the Cordillera, have been formed by the arrestment of river-borne detritus at successive levels, in the same manner as we see now taking place at the heads of all those many, deep, winding fiords intersecting the southern coasts. To my mind, this has been one of the most important conclusions to which my observations on the geology of South America have led me; for we thus learn that one of the grandest and most symmetrical mountain-chains in the world, with its several parallel lines, has been together uplifted in mass between seven and nine thousand feet, in the same gradual manner as have the eastern and western coasts within the recent period. (I do not wish to affirm that all the lines have been uplifted quite equally; slight differences in the elevation would leave no perceptible effect on the terraces. It may, however, be inferred, perhaps with one exception, that since the period when the sea occupied these valleys, the several ranges have not been dislocated by GREAT and ABRUPT faults or upheavals; for if such had occurred, the terraces of gravel at these points would not have been continuous. The one exception is at the lower end of a plain in the Valle del Yeso (a branch of the Maypu), where, at a great height, the terraces and valley appear to have been broken through by a line of upheaval, of which the evidence is plain in the adjoining mountains; this dislocation, perhaps, occurred AFTER THE ELEVATION of this part of the valley above the level of the sea. The valley here is almost blocked up by a pile about one thousand feet in thickness, formed, as far as I could judge, from three sides, entirely, or at least in chief part, of gravel and detritus. On the south side, the river has cut quite through this mass; on the northern side, and on the very summit, deep ravines, parallel to the line of the valley, are worn, as if the drainage from the valley above had passed by these two lines before following its present course.)

FORMATION OF VALLEYS.

The bulk of solid rock which has been removed in the lower parts of the valleys of the Cordillera has been enormous. It is only by reflecting on such cases as that of the gravel beds of Patagonia, covering so many thousand square leagues of surface, and which, if heaped into a ridge, would form a mountain-range almost equal to the Cordillera, that the amount of denudation becomes credible. The valleys within this range often follow anticlinal but rarely synclinal lines; that is, the strata on the two sides more often dip from the line of valley than towards it. On the flanks of the range, the valleys most frequently run neither along anticlinal nor synclinal axes, but along lines of flexure or faults: that is, the strata on both sides dip in the same direction, but with different, though often only slightly different, inclinations. As most of the nearly parallel ridges which together form the Cordillera run approximately north and south, the east and west valleys cross them in zig-zag lines, bursting through the points where the strata have been least inclined. No doubt the greater part of the denudation was affected at the periods when tidal- creeks occupied the valleys, and when the outer flanks of the mountains were exposed to the full force of an open ocean. I have already alluded to the power of the tidal action in the channels connecting great bays; and I may here mention that one of the surveying vessels in a channel of this kind, though under sail, was whirled round and round by the force of the current. We shall hereafter see, that of the two main ridges forming the Chilean Cordillera, the eastern and loftiest one owes the greater part of its ANGULAR upheaval to a period subsequent to the elevation of the western ridge; and it is likewise probable that many of the other parallel ridges have been angularly upheaved at different periods; consequently many parts of the surfaces of these mountains must formerly have been exposed to the full force of the waves, which, if the Cordillera were now sunk into the sea, would be protected by parallel chains of islands. The torrents in the valleys certainly have great power in wearing the rocks; as could be told by the dull rattling sound of the many fragments night and day hurrying downwards; and as was attested by the vast size of certain fragments, which I was assured had been carried onwards during floods; yet we have seen in the lower parts of the valleys, that the torrents have seldom removed all the sea-checked shingle forming the terraces, and have had time since the last elevation in mass only to cut in the underlying rocks, gorges, deep and narrow, but quite insignificant in dimensions compared with the entire width and depth of the valleys.

 

Along the shores of the Pacific, I never ceased during my many and long excursions to feel astonished at seeing every valley, ravine, and even little inequality of surface, both in the hard granitic and soft tertiary districts, retaining the exact outline, which they had when the sea left their surfaces coated with organic remains. When these remains shall have decayed, there will be scarcely any difference in appearance between this line of coast-land and most other countries, which we are accustomed to believe have assumed their present features chiefly through the agency of the weather and fresh-water streams. In the old granitic districts, no doubt it would be rash to attribute all the modifications of outline exclusively to the sea-action; for who can say how often this lately submerged coast may not previously have existed as land, worn by running streams and washed by rain? This source of doubt, however, does not apply to the districts superficially formed of the modern tertiary deposits. The valleys worn by the sea, through the softer formations, both on the Atlantic and Pacific sides of the continent, are generally broad, winding, and flat-bottomed: the only district of this nature now penetrated by arms of the sea, is the island of Chiloe.

Finally, the conclusion at which I have arrived, with respect to the relative powers of rain and sea water on the land, is, that the latter is far the most efficient agent, and that its chief tendency is to widen the valleys; whilst torrents and rivers tend to deepen them, and to remove the wreck of the sea's destroying action. As the waves have more power, the more open and exposed the space may be, so will they always tend to widen more and more the mouths of valleys compared with their upper parts: hence, doubtless, it is, that most valleys expand at their mouths, – that part, at which the rivers flowing in them, generally have the least wearing power.

When reflecting on the action of the sea on the land at former levels, the effect of the great waves, which generally accompany earthquakes, must not be overlooked: few years pass without a severe earthquake occurring on some part of the west coast of South America; and the waves thus caused have great power. At Concepcion, after the shock of 1835, I saw large slabs of sandstone, one of which was six feet long, three in breadth, and two in thickness, thrown high up on the beach; and from the nature of the marine animals still adhering to it, it must have been torn up from a considerable depth. On the other hand, at Callao, the recoil-wave of the earthquake of 1746 carried great masses of brickwork, between three and four feet square, some way out seaward. During the course of ages, the effect thus produced at each successive level, cannot have been small; and in some of the tertiary deposits on this line of coast, I observed great boulders of granite and other neighbouring rocks, embedded in fine sedimentary layers, the transportal of which, except by the means of earthquake-waves, always appeared to me inexplicable.

SUPERFICIAL SALINE DEPOSITS.

This subject may be here conveniently treated of: I will begin with the most interesting case, namely, the superficial saline beds near Iquique in Peru. The porphyritic mountains on the coast rise abruptly to a height of between one thousand nine hundred and three thousand feet: between their summits and an inland plain, on which the celebrated deposit of nitrate of soda lies, there is a high undulatory district, covered by a remarkable superficial saliferous crust, chiefly composed of common salt, either in white, hard, opaque nodules, or mingled with sand, in this latter case forming a compact sandstone. This saliferous superficial crust extends from the edge of the coast-escarpment, over the whole face of the country; but never attains, as I am assured by Mr. Bollaert (long resident here) any great thickness. Although a very slight shower falls only at intervals of many years, yet small funnel-shaped cavities show that the salt has been in some parts dissolved. (It is singular how slowly, according to the observations of M. Cordier on the salt-mountain of Cardona in Spain "Ann. des Mines, Translation of Geolog. Mem." by De la Beche page 60, salt is dissolved, where the amount of rain is supposed to be as much as 31.4 of an inch in the year. It is calculated that only five feet in thickness is dissolved in the course of a century.) In several places I saw large patches of sand, quite moist, owing to the quantity of muriate of lime (as ascertained by Mr. T. Reeks) contained in them. From the compact salt- cemented sand being either red, purplish, or yellow, according to the colour of the rocky strata on which it rested, I imagined that this substance had probably been derived through common alluvial action from the layers of salt which occur interstratified in the surrounding mountains ("Journal of Researches" page 444 first edition.): but from the interesting details given by M. d'Orbigny, and from finding on a fresh examination of this agglomerated sand, that it is not irregularly cemented, but consists of thin layers of sand of different tints of colour, alternating with excessively fine parallel layers of salt, I conclude that it is not of alluvial origin. M. d'Orbigny observed analogous saline beds extending from Cobija for five degrees of latitude northward, and at heights varying from six hundred to nine hundred feet ("Voyage" etc. page 102. M. d'Orbigny found this deposit intersected, in many places, by deep ravines, in which there was no salt. Streams must once, though historically unknown, have flowed in them; and M. d'Orbigny argues from the presence of undissolved salt over the whole surrounding country, that the streams must have arisen from rain or snow having fallen, not in the adjoining country, but on the now arid Cordillera. I may remark, that from having observed ruins of Indian buildings in absolutely sterile parts of the Chilian Cordillera ("Journal" 2nd edition page 357), I am led to believe that the climate, at a time when Indian man inhabited this part of the continent, was in some slight degree more humid than it is at present.): from finding recent sea- shells strewed on these saliferous beds, and under them, great well-rounded blocks, exactly like those on the existing beach, he believes that the salt, which is invariably superficial, has been left by the evaporation of the sea-water. This same conclusion must, I now believe, be extended to the superficial saliferous beds of Iquique, though they stand about three thousand feet above the level of the sea.

Associated with the salt in the superficial beds, there are numerous, thin, horizontal layers of impure, dirty-white, friable, gypseous and calcareous tuffs. The gypseous beds are very remarkable, from abounding with, so as sometimes to be almost composed of, irregular concretions, from the size of an egg to that of a man's head, of very hard, compact, heavy gypsum, in the form of anhydrite. This gypsum contains some foreign particles of stone; it is stained, judging from its action with borax, with iron, and it exhales a strong aluminous odour. The surfaces of the concretions are marked by sharp, radiating, or bifurcating ridges, as if they had been (but not really) corroded: internally they are penetrated by branching veins (like those of calcareous spar in the septaria of the London clay) of pure white anhydrite. These veins might naturally have been thought to have been formed by subsequent infiltration, had not each little embedded fragment of rock been likewise edged in a very remarkable manner by a narrow border of the same white anhydrite: this shows that the veins must have been formed by a process of segregation, and not of infiltration. Some of the little included and CRACKED fragments of foreign rock are penetrated by the anhydrite, and portions have evidently been thus mechanically displaced: at St. Helena, I observed that calcareous matter, deposited by rain water, also had the power to separate small fragments of rock from the larger masses. ("Volcanic Islands" etc. page 87.) I believe the superficial gypseous deposit is widely extended: I received specimens of it from Pisagua, forty miles north of Iquique, and likewise from Arica, where it coats a layer of pure salt. M. d'Orbigny found at Cobija a bed of clay, lying above a mass of upraised recent shells, which was saturated with sulphate of soda, and included thin layers of fibrous gypsum. ("Voyage Geolog." etc. page 95.) These widely extended, superficial, beds of salt and gypsum, appear to me an interesting geological phenomenon, which could be presented only under a very dry climate.

The plain or basin, on the borders of which the famous bed of nitrate of soda lies, is situated at the distance of about thirty miles from the sea, being separated from it by the saliferous district just described. It stands at a height of 3,300 feet; its surface is level, and some leagues in width; it extends forty miles northward, and has a total length (as I was informed by Mr. Belford Wilson, the Consul-General at Lima) of 420 miles. In a well near the works, thirty-six yards in depth, sand, earth, and a little gravel were found: in another well, near Almonte, fifty yards deep, the whole consisted, according to Mr. Blake, of clay, including a layer of sand two feet thick, which rested on fine gravel, and this on coarse gravel, with large rounded fragments of rock. (See an admirable paper "Geological and Miscellaneous Notices of Tarapaca" in "Silliman's American Journal" volume 44 page 1.) In many parts of this now utterly desert plain, rushes and large prostrate trees in a hardened state, apparently Mimosas, are found buried, at a depth from three to six feet; according to Mr. Blake, they have all fallen to the south-west. The bed of nitrate of soda is said to extend for forty to fifty leagues along the western margin of the plain, but is not found in its central parts: it is from two to three feet in thickness, and is so hard that it is generally blasted with gunpowder; it slopes gently upwards from the edge of the plain to between ten and thirty feet above its level. It rests on sand in which, it is said, vegetable remains and broken shells have been found; shells have also been found, according to Mr. Blake, both on and in the nitrate of soda. It is covered by a superficial mass of sand, containing nodules of common salt, and, as I was assured by a miner, much soft gypseous matter, precisely like that in the superficial crust already described: certainly this crust, with its characteristic concretions of anhydrite, comes close down to the edge of the plain.

The nitrate of soda varies in purity in different parts, and often contains nodules of common salt. According to Mr. Blake, the proportion of nitrate of soda varies from 20 to 75 per cent. An analysis by Mr. A. Hayes, of an average specimen, gave: —

Nitrate of Soda… 64.98

Sulphate of Soda… 3.00

Chloride of Soda… 28.69

Iodic Salts..... 0.63

Shells and Marl… 2.60

99.90

The "mother-water" at some of the refineries is very rich in iodic salts, and is supposed to contain much muriate of lime. ("Literary Gazette" 1841 page 475.) In an unrefined specimen brought home by myself, Mr. T. Reeks has ascertained that the muriate of lime is very abundant. With respect to the origin of this saline mass, from the manner in which the gently inclined, compact bed follows for so many miles the sinuous margin of the plain, there can be no doubt that it was deposited from a sheet of water: from the fragments of embedded shells, from the abundant iodic salts, from the superficial saliferous crust occurring at a higher level and being probably of marine origin, and from the plain resembling in form those of Chile and that of Uspallata, there can be little doubt that this sheet of water was, at least originally, connected with the sea. (From an official document, shown me by Mr. Belford Wilson, it appears that the first export of nitrate of soda to Europe was in July 1830, on French account, in a British ship: —

 

In year, the entire export was in Quintals.

1830............... 17,300

1831............... 40,885

1832............... 51,400

1833............... 91,335

1834............... 149,538

The Spanish quintal nearly equals 100 English pounds.)

THIN, SUPERFICIAL, SALINE INCRUSTATIONS.

These saline incrustations are common in many parts of America: Humboldt met with them on the tableland of Mexico, and the Jesuit Falkner and other authors state that they occur at intervals over the vast plains extending from the mouth of the Plata to Rioja and Catamarca. (Azara "Travels" volume 1 page 55, considers that the Parana is the eastern boundary of the saliferous region; but I heard of "salitrales" in the Province of Entre Rios.) Hence it is that during droughts, most of the streams in the Pampas are saline. I nowhere met with these incrustations so abundantly as near Bahia Blanca: square miles of the mud-flats, which near that place are raised only a few feet above the sea, just enough to protect them from being overflowed, appear, after dry weather, whiter than the ground after the thickest hoar-frost. After rain the salts disappear, and every puddle of water becomes highly saline; as the surface dries, the capillary action draws the moisture up pieces of broken earth, dead sticks, and tufts of grass, where the salt effloresces. The incrustation, where thickest, does not exceed a quarter of an inch. M. Parchappe has analysed it (M. d'Orbigny "Voyage" etc. Part. Hist. tome 1 page 664.); and finds that the specimens collected at the extreme head of the low plain, near the River Manuello, consist of 93 per cent of sulphate of soda, and 7 of common salt; whilst the specimens taken close to the coast contain only 63 per cent of the sulphate, and 37 of the muriate of soda. This remarkable fact, together with our knowledge that the whole of this low muddy plain has been covered by the sea within the recent period, must lead to the suspicion that the common salt, by some unknown process, becomes in time changed into the sulphate. Friable, calcareous matter is here abundant, and the case of the apparent double decomposition of the shells and salt on San Lorenzo, should not be forgotten.

The saline incrustations, near Bahia Blanca, are not confined to, though most abundant on, the low muddy flats; for I noticed some on a calcareous plain between thirty and forty feet above the sea, and even a little occurs in still higher valleys. Low alluvial tracts in the valleys of the Rivers Negro and Colorado are also encrusted, and in the latter valley such spaces appeared to be occasionally overflowed by the river. I observed saline incrustations in some of the valleys of Southern Patagonia. At Port Desire a low, flat, muddy valley was thickly incrusted by salts, which on analysis by Mr. T. Reeks, are found to consist of a mixture of sulphate and muriate of soda, with carbonate of lime and earthy matter. On the western side of the continent, the southern coasts are much too humid for this phenomenon; but in Northern Chile I again met with similar incrustations. On the hardened mud, in parts of the broad, flat-bottomed valley of Copiapo, the saline matter encrusts the ground to the thickness of some inches: specimens, sent by Mr. Bingley to Apothecaries' Hall for analysis, were said to consist of carbonate and sulphate of soda. Much sulphate of soda is found in the desert of Atacama. In all parts of South America, the saline incrustations occur most frequently on low damp surfaces of mud, where the climate is rather dry; and these low surfaces have, in almost every case, been upraised above the level of the sea, within the recent period.

SALT-LAKES OF PATAGONIA AND LA PLATA.

Salinas, or natural salt-lakes, occur in various formations on the eastern side of the continent, – in the argillaceo-calcareous deposit of the Pampas, in the sandstone of the Rio Negro, where they are very numerous, in the pumiceous and other beds of the Patagonian tertiary formation, and in small primary districts in the midst of this latter formation. Port S. Julian is the most southerly point (latitude 49 degrees to 50 degrees) at which salinas are known to occur. (According to Azara "Travels" volume 1 page 56, there are salt-lakes as far north as Chaco (latitude 25 degrees), on the banks of the Vermejo. The salt-lakes of Siberia appear (Pallas "Travels" English Translation volume 1 page 284) to occur in very similar depressions to those of Patagonia.) The depressions, in which these salt-lakes lie, are from a few feet to sixty metres, as asserted by M. d'Orbigny, below the surface of the surrounding plains ("Voyage Geolog." page 63.); and, according to this same author, near the Rio Negro they all trend, either in the N.E. and S.W. or in E. and W. lines, coincident with the general slope of the plain. These depressions in the plain generally have one side lower than the others, but there are no outlets for drainage. Under a less dry climate, an outlet would soon have been formed, and the salt washed away. The salinas occur at different elevations above the sea; they are often several leagues in diameter; they are generally very shallow, but there is a deep one in a quartz-rock formation near C. Blanco. In the wet season, the whole, or a part, of the salt is dissolved, being redeposited during the succeeding dry season. At this period the appearance of the snow-white expanse of salt crystallised in great cubes, is very striking. In a large salina, northward of the Rio Negro, the salt at the bottom, during the whole year, is between two and three feet in thickness.

The salt rests almost always on a thick bed of black muddy sand, which is fetid, probably from the decay of the burrowing worms inhabiting it. (Professor Ehrenberg examined some of this muddy sand, but was unable to find in it any infusoria.) In a salina, situated about fifteen miles above the town of El Carmen on the Rio Negro, and three or four miles from the banks of that river, I observed that this black mud rested on gravel with a calcareous matrix, similar to that spread over the whole surrounding plains: at Port S. Julian the mud, also, rested on the gravel: hence the depressions must have been formed anteriorly to, or contemporaneously with, the spreading out of the gravel. I was informed that one small salina occurs in an alluvial plain within the valley of the Rio Negro, and therefore its origin must be subsequent to the excavation of that valley. When I visited the salina, fifteen miles above the town, the salt was beginning to crystallise, and on the muddy bottom there were lying many crystals, generally placed crossways of sulphate of soda (as ascertained by Mr. Reeks), and embedded in the mud, numerous crystals of sulphate of lime, from one to three inches in length: M. d'Orbigny states that some of these crystals are acicular and more than even nine inches in length ("Voyage Geolog." page 64.); others are macled and of great purity: those I found all contained some sand in their centres. As the black and fetid sand overlies the gravel, and that overlies the regular tertiary strata, I think there can be no doubt that these remarkable crystals of sulphate of lime have been deposited from the waters of the lake. The inhabitants call the crystals of selenite, the padre del sal, and those of the sulphate of soda, the madre del sal; they assured me that both are found under the same circumstances in several of the neighbouring salinas; and that the sulphate of soda is annually dissolved, and is always crystallised before the common salt on the muddy bottom. (This is what might have been expected; for M. Ballard asserts "Acad. des Sciences" October 7, 1844, that sulphate of soda is precipitated from solution more readily from water containing muriate of soda in excess, than from pure water.) The association of gypsum and salt in this case, as well as in the superficial deposits of Iquique, appears to me interesting, considering how generally these substances are associated in the older stratified formations.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27 
Рейтинг@Mail.ru