Как правило, теория игр включает такие понятия, как рациональность и общеизвестность рациональности игроков. Рациональность – это качество игроков, которые хорошо понимают игровую ситуацию и рассуждают логически.
Общеизвестность рациональности игроков – это менее определенный критерий, значение которого в следующем: «Не только мы оба должны быть рациональны, но и я должен знать, что ты рационален. Мне нужен и второй уровень знания: я должен знать, что ты знаешь, что я рационален. Так же необходимый мне третий уровень знания гласит: я должен знать, что ты знаешь, что я знаю, что ты знаешь, что я рационален». И так далее к более глубоким уровням знания. Общеизвестность рациональности требует от игроков способности бесконечно продолжать эту цепь знаний.
Эти требования общеизвестности рациональности легко могут запутать, но, что еще хуже, они могут просто-напросто не сработать, особенно в играх с большим количеством участников. Классический пример – так называемый «Кейнсианский конкурс красоты», в котором английский экономист Джон Мейнард Кейнс (1883–1946) сравнивает инвестиции в финансовые рынки с конкурсом, проводимым одной газетой в США, суть которого состояла в том, что читатели должны были выбрать «самую красивую девушку», то есть побеждали те читатели, что голосовали за наиболее часто выбираемую девушку.
На первый взгляд может показаться, что «Кейнсианский конкурс красоты» едва ли можно сравнивать с финансовыми рынками: тут нет никаких цен, покупателей и продавцов. Но у них есть один важный общий элемент. Добиться успеха на финансовом рынке можно лишь будучи на шаг впереди остальных. Если вы способны предсказать поведение среднестатистического инвестора, вы сорвете куш. Так же и в «Кейнсианском конкурсе красоты»: если вы можете предсказать среднестатистический выбор читателей газеты, вы можете победить.
В 1997 году американский поведенческий экономист Ричард Талер (род. в 1945 г.) провел эксперимент в газете Financial Times под названием «Игра на угадывание» – его версия «Кейнсианского конкурса красоты».
Какое число выбрали бы вы?
Газета Financial Times получила более тысячи заявок в ходе эксперимента Ричарда Талера. Заявки с числом 33 были самыми частыми, на втором месте было число 22. Из этого можно сделать вывод, что многие продумали один шаг и выбрали 33. Но многие подумали, что другие на этом и остановятся, и попытались быть на шаг впереди них, выбрав число 22 (⅔ от 33).
Тем не менее если имеет место общеизвестность рациональности игроков, если вы знаете, что остальные не остановятся на первом шаге, то можете бесконечно продолжать такое итеративное рассуждение – процесс логического размышления, который включает повторение одного и того же действия, при котором результат одного этапа берется за отправную точку следующего.
Ученые, занимающиеся теорией игр, похожим образом играют в «Игру на угадывание» – они применяют итеративное исключение доминируемых стратегий.
Держим в уме, что нам необходимо найти число, равное ⅔ от среднего арифметического всех чисел, участвующих в конкурсе. Если бы все участники выбрали наибольшее из разрешенных чисел, то есть 100, то среднее арифметическое было бы равно 100. Соответственно, несмотря на то, каковы ожидания людей относительно среднего арифметического, нет никакого смысла в том, чтобы выбирать число, большее, чем ⅔ от 100, то есть 67.
Другими словами, любая стратегия с числом, большим, чем 67, доминируема числом 67. Говорят, что стратегия доминируема, если она (в данном случае выбор числа, большего, чем 67) дает игроку меньшие выигрыши, чем другая (выбор числа 67), при любых действиях оппонентов. Соответственно, даже если остальные игроки не рациональны, все стратегии, при которых названы числа больше 67, могут быть исключены.
Если остальные игроки рациональны, то каждый игрок может предполагать, что никто не назовет число больше 67. Таким образом, все догадки от 45 (ближайшее целое число к ⅔ от 67) также исключаются. А оттого, что каждый участник знает, что другие знают, что каждый рационален, все могут быть уверены, что никто не выберет число, большее, чем 45, и никто не выберет число большее, чем 30, которое равно ⅔ от 45.
Тем не менее ноль не оказался выигрышным числом в этом эксперименте в Financial Times. Средним арифметическим было число 19, поэтому победило число 13.
В этом случае принципы рациональности и общеизвестности рациональности не были соблюдены. К примеру, многие участники нерационально выбрали число 100. Даже если бы кто-то ошибочно полагал, что все выберут 100, то оптимальным ответом было бы 67. Такие участники либо не совсем поняли правила игры, либо не смогли посчитать, сколько будет ⅔ от 100.
Концепция рациональности требует от игрока неограниченных когнитивных возможностей. Полностью рациональный человек знает, как решить любую математическую задачу, и может немедленно провести все вычисления, вне зависимости от уровня их сложности. Человеческое поведение можно было бы лучше соотнести с «ограниченной» рациональностью. Это значит, что человеческая рациональность ограничена разрешимостью задачи (то, насколько легко ее можно решить), нашими умственными возможностями, количеством отведенного времени и тем, насколько для нас важно решение этой задачи.
В дополнение к концепции «ограниченной» рациональности, которая имеет большое количество участников, как, например, было в «Игре на угадывание», трудно представить ситуацию, в которой сработал бы принцип общеизвестности рациональности. Даже если все игроки рациональны, вы не выберете 0, если думаете, что остальные игроки не знают, что вы рациональны. Вы бы выбрали число большее, чем 0.