Прогресс не стоит на месте. Это, разумеется, касается и медицины, в которую быстро внедряются новейшие достижения таких наук, как физика, химия и биология. Если раньше медицина всегда имела дело с уже возникшим заболеванием, а попытки его предотвращения были похожи на блуждания в потемках, современные технологии позволяют предсказывать некоторые состояния заранее. В первую очередь это касается наследственных заболеваний (подробно о наследственных заболеваниях можно прочитать в разделе «Какие болезни называют наследственными?»).
А теперь давайте поговорим непосредственно про то, как предсказать или диагностировать заболевание у плода, то есть сделать это до появления ребенка на свет. Подобная диагностика называется пренатальной (дородовой).
Существуют разные методы оценки рисков для будущего потомства, и они могут применяться, даже когда беременность еще не наступила.
Самый старый и неточный метод. При наличии достаточного количества данных позволяет рассчитать вероятность рождения ребенка с заболеванием или носителя определенного наследственного заболевания, если удастся обнаружить такое у родственников.
Анализ родословной начинается со сбора сведений о семье, и прежде всего со сбора сведений о пробанде – индивиде, который является основным предметом интереса врача. Чем больше поколений вовлекается в родословную, тем больше информации она может содержать. Для уточнения сведений могут потребоваться медицинские карты родственников, их фотографии. Чем больше глубина генеалогического поиска, тем ценнее и надежнее получаемая информация. По мере сбора данных составляется специальная карта. Обычно мужчину на ней обозначают квадратом, женщину – кругом, соединяющая круг и квадрат прямая линия означает брак, а в случае наличия заболевания круг или квадрат закрашивается. После того как составлена родословная, тщательный анализ позволит врачу определить, является ли заболевание доминантным (проявится при наличии хотя бы одной дефектной копии гена) или рецессивным (для проявления нужно иметь две дефектные копии гена).
Для заболеваний, являющихся аутосомно-доминантными (передающимися доминантным путем с дефектным геном, который содержится не в половых хромосомах), характерны следующие черты:
• заболевшие имеют по крайней мере одного больного родителя;
• два здоровых родителя имеют только здоровое потомство.
А вот пример родословной, в которой виден путь аутосомно-доминантного заболевания (например, хореи Гентингтона). Из нее можно сделать вывод, что из индивидов в нижнем ряду не рискует передать заболевание потомству лишь мужчина и женщина, обозначенные оранжевым цветом (при условии здоровья второго партнера). Для всех остальных риск рождения больного ребенка при условии здоровья партнера составит 50 % (рис. 1)
Для заболеваний, являющихся аутосомно-рецессивными (передающимися рецессивным путем с дефектным геном, который содержится не в половых хромосомах), характерны следующие черты:
• у здоровых родителей может быть больной ребенок, так как они могут быть носителями заболевания (рис. 2).
На этой родословной как раз можно видеть путь аутосомно-рецессивного заболевания (например, фенилкетонурии). Для наглядности здоровые носители заболевания закрашены наполовину. Обратите внимание, что в случае наличия одного больного родителя все дети будут носителями и потенциально смогут передать болезнь потомку, если их партнер будет носителем или больным.
Рис. 1. Наследование аутосомно-доминантного заболевания.
Существуют и заболевания, сцепленные с половыми хромосомами, которые могут передаваться также доминантным или рецессивным путями (о таких заболеваниях читайте подробно в разделе «Какие болезни чаще наследуют мальчики, а какие – девочки?»). В таком случае картины родословных будут отличаться.
Так или иначе, на приведенных выше родословных мы видели идеальную картинку, которую редко можно получить в реальной жизни, особенно если про здоровье родственников мало что известно. В конце концов, легко представить, что человек никогда не видел своих биологических родителей или рецессивное заболевание в течение нескольких поколений не могло проявить себя и теперь спит в вас, ожидая своего возвращения на сцену. В таких случаях будет очень полезен следующий метод диагностики.
Рис. 2. Наследование аутосомно-рецессивного заболевания.
Для этого родители будущего ребенка сдают свой биоматериал (кровь или слюну) на анализ. В этих биологических жидкостях находятся клетки, из которых можно извлечь ДНК на анализ. Далее проводится скрининговый анализ на отдельно взятые мутации или исследование всех известных генов методом секвенирования. Второй вариант предпочтительнее, хотя и дороже, так как дает возможность проверить носительство большего количества заболеваний. Если заболевание или его носительство выявляется у родителей, им необходимо подтвердить результат методом ПЦР-диагностики – это узконаправленный тест, позволяющий «размножить» конкретный ген и проверить его на наличие мутаций. На основе полученных данных можно спрогнозировать вероятность рождения больного ребенка и быть готовыми, если вероятность отлична от нуля.
Необходимо учитывать, что эти тесты позволяют провести скрининг далеко не на все существующие наследственные заболевания. К примеру, тот же синдром Дауна таким способом выявить не получится. Как это сделать – читайте далее.
Итак, допустим, мы успешно провели два метода диагностики, ничего не обнаружили и перешли к следующему этапу – беременности. Но расслабляться все еще рано, если мы не хотим что-нибудь пропустить. Вот что дальше по плану:
Пренатальная диагностика располагает несколькими основными методами, о которых и пойдет речь.
1. Инвазивное тестирование плода
Инвазивное тестирование плода – это метод, который связан с нарушением естественных барьеров организма (кожи, слизистой) медицинскими инструментами.
Мы хотим изучить не родителей, а сам плод, который в данный момент находится в матке, и напрямую к нему подобраться нельзя. В зависимости от срока беременности мы можем попытаться сделать прокол в матке и взять образец хориона (ворсинчатой оболочки плодного яйца), добыть кусочек плаценты, проколоть плодный пузырь и взять из него на анализ околоплодные воды (они содержат клетки), а также – кровь из пуповины. Из клеток, содержащихся в извлеченных образцах, можно получить ДНК плода и проанализировать ее на предмет аномалий. На этом этапе можно выявить и так называемые хромосомные патологии – заболевания, связанные с изменением количества или структуры хромосом. К ним как раз относится синдром Дауна.
К сожалению, инвазивный метод представляет хоть и не слишком большой, но риск для плода (может произойти выкидыш). Поэтому в дополнение к скринингам были разработаны неинвазивные методы, чтобы точнее выявлять тех беременных, кому инвазивная диагностика действительно показана.
2. Неинвазивное пренатальное тестирование
В ходе этого тестирования у беременной женщины берется кровь, в которой затем анализируются небольшие циркулирующие фрагменты ДНК. В отличие от большей части ДНК, которая находится внутри клеточного ядра, эти фрагменты находятся в свободном плавании, а не внутри клеток, поэтому их называют внеклеточной ДНК. Эти фрагменты возникают, когда клетки отмирают и разрушаются, а их содержимое, включая ДНК, попадает в кровоток.
Во время беременности кровоток матери содержит смесь внеклеточной ДНК, происходящей из ее клеток и клеток плаценты. ДНК клеток плаценты обычно идентична ДНК плода. С помощью этого теста также можно обнаружить хромосомные патологии. В кровотоке матери при этом должно быть достаточно ДНК плода, что обычно происходит не ранее 10 недели беременности.
3. Преимплантационное генетическое тестирование
Существует также преимплантационное генетическое тестирование. Это исследование применяется перед тем, как подсадить женщине эмбрион, полученный путем оплодотворения яйцеклетки в лабораторных условиях – ЭКО (о нем в разделе «Как с помощью ЭКО можно избежать наследственных заболеваний?»).
Несмотря на то, что ни один метод пренатальной диагностики не даст стопроцентной гарантии выявления наследственного заболевания у плода, она позволяет с большой вероятностью спрогнозировать возникновение распространенных наследственных заболеваний что даст время принять решение о дальнейших действиях, ведь кто предупрежден – тот вооружен.
Еще совсем недавно на этот вопрос следовало бы ответить «нет», но теперь медицина уже располагает методами, спасающими от некоторых заболеваний, которые были нам предначертаны с рождения. Ключевыми в данном случае являются три вопроса: «Что?», «Где?» и «Когда?» Что это за заболевание и каков его механизм развития? Где в нашем теле оно разовьется? Когда выявили предрасположенность?
Методы спасения можем разделить на группы:
1. Не даем механизму, приводящему к развитию симптомов заболевания, реализоваться.
Ярким примером такого подхода является фенилкетонурия.
Фенилкетонурия – это достаточно серьезное наследственное заболевание, вызванное патогенными вариантами гена PAH. Как вы знаете, наш организм перерабатывает полученные белки до аминокислот, которые затем использует на свое усмотрение: строит на их основе нужные вещества или расщепляет и выводит. Организм людей с фенилкетонурией не может расщеплять аминокислоту фенилаланин, из-за чего она накапливается. Это может привести к повреждению головного мозга. Однако, если вовремя диагностировать заболевание (в первые дни после рождения), будет назначена специальная диета, которая поможет избежать серьезных последствий и не пострадать интеллектуально в будущем.
2. Удаляем орган, который болезнь собирается поразить.
Вспомните Анджелину Джоли. У актрисы обнаружили патогенный вариант гена BRCA1, что позволило ей предупредить развитие рака молочной железы, сделав мастэктомию (операцию по удалению молочной железы) по рекомендации врачей. Шанс заболеть у Джоли врачи оценили в 87 %, что и позволило в этом случае рекомендовать операцию.
3. Применяем метод генной терапии.
Вводим пациенту здоровую ДНК-последовательность вместо нарушенной.
Например, для лечения спинально-мышечной атрофии (СМА) используется препарат «Золгенсма». Однако препарат показал эффективность при назначении детям до 2 лет, а наиболее результативным было введение до 6 месяцев, что означает, что для получения ожидаемого результата диагноз должен быть поставлен до того, как болезнь успеет вызвать необратимые изменения.
В настоящее время успешно прошедших испытания препаратов генной терапии мало, а их стоимость очень высока, однако ожидается, что в ближайшем будущем количество заболеваний, которые можно будет лечить данным путем, значительно возрастет. Проблемой развития данного метода остается то, что некоторые болезни слишком редки (представьте себе одного заболевшего на миллион человек), что делает разработку лекарств коммерчески невыгодным для фармкомпаний. К примеру, одно из самых дорогих лекарств в мире – «Глибера», предназначавшаяся для лечения дефицита липопротеинлипазы, перестало выпускаться. По некоторым данным, за несколько лет существования препарата на рынке его купили всего один раз. Поэтому сначала, скорее всего, появятся препараты для лечения более частых наследственных заболеваний.
Согласно мировой статистике, около 15–20 % молодых пар сталкиваются с проблемами при попытке зачатия ребенка.
Треть всех подобных случаев связана с генетическими отклонениями одного или обоих партнеров, приводящих к снижению или отсутствию фертильности (бесплодию), то есть невозможности сформировать полностью функциональные половые клетки – сперматозоиды и яйцеклетки. Подобную клиническую картину ранее часто описывали как идиопатическое бесплодие, то есть бесплодие, причина которого не может быть определена. К счастью, стремительное развитие репродуктивных технологий и технологий лабораторного анализа позволяет все чаще устанавливать истинную причину невозможности зачать ребенка и предлагает решения проблемы. В этой главе мы поговорим об известных науке на данный момент генетических факторах бесплодия у мужчин и женщин.
В отличие от моногенных заболеваний (заболеваний, проявление которых в большинстве случаев зависит от наличия хотя бы одной патогенной генетической вариации в одном гене), факторами бесплодия зачастую становятся изменения в структуре хромосом, их количестве, а также большие делеции, затрагивающие один или несколько генов. Процессы сперматогенеза и формирования яйцеклеток биологически очень сложны и подвержены строгому контролю и содействию со стороны разных биологических систем, состоящих из множества белков. Нарушение функции хотя бы одного белка вследствие изменений в кодирующем его гене может привести к полной остановке процесса гаметогенеза.
Наиболее частым фактором бесплодия у мужчин и женщин являются хромосомные аберрации – то есть большие перестройки внутри хромосом или изменение количества хромосом. Последние принято называть изменениями кариотипа – количественного и качественного состава ядерных хромосом.
Статистика показывает, что среди бесплодных мужчин увеличение копий Х хромосомы встречается в 27 раз чаще, чем у фертильных представителей мужского пола. Увеличение копий аутосом (неполовых хромосом) встречается в 5 раз чаще. У мужчин с азооспермией (наличием менее 10 миллионов сперматозоидов в 1 мл эякулята) изменение копийности и структуры аутосом встречается в 4 % случаев, что в 10 раз чаще по сравнению со здоровой мужской половиной популяции, при более высокой степени азооспермии (менее 5 миллионов сперматозоидов в 1 мл эякулята) этот показатель увеличивается до 20 раз (8 %).
Среди мужчин с изменением количества половых хромосом наиболее частым случаем является синдром Кляйнфельтера – кариотипы 47,XXY (47 хромосом, из них две Х хромосомы и одна Y хромосома), 48,XXXY, 49,XXXXY и т. д. В одном индивидууме могут встречаться разные кариотипы – это так называемый феномен мозаицизма, когда разные клетки одного и того же организма генетически отличаются друг от друга. Синдром Кляйнфельтера имеет множество фенотипических проявлений, одним из которых является азооспермия и бесплодие. Некоторые исследования показывают, что с синдромом Кляйнфельтера способность продуцировать функциональные сперматозоиды с нормальным набором хромосом иногда частично остается, что дает возможность использовать методы вспомогательных репродуктивных технологий (например, TESE – экстракция сперматозоидов из яичка) для извлечения этих сперматозоидов и последующего искусственного оплодотворения. Однако вследствие частого возникновения хромосомных аберраций в эмбрионах, полученных от оплодотворения яйцеклетки сперматозоидами отца с синдромом Кляйнфельтера, преимплантационная генетическая диагностика настоятельно рекомендуется к использованию.
Другими частыми для бесплодных мужчин кариотипами являются 47,XYY и 46,XX (описывается у мужчин как гермафродитизм, такой же кариотип свойственен здоровым женщинам). Среди них кариотип 47,XYY встречается в 4 раза чаще, чем в среднем в новорожденных мальчиках, однако фертильность таких мужчин варьируется от высокой степени азооспермии до полной фертильности. Кариотип 46,XX у мужчин часто объясняется переносом участка Y хромосомы на Х хромосому, такие мужчины всегда проявляют азооспермию.
Структурные изменения хромосом (например, делеция большого участка хромосомы) также являются частым фактором мужского бесплодия. Описаны случаи делеции длинного плеча Y хромосомы, несущего многие важные гены, определяющие развитие и поддержание половой функции. Мужчинам с такой делецией свойственны Сертоли-клеточный синдром – то есть полное отсутствие клеток-предшественников сперматозоидов в ткани семенников – и, как следствие, бесплодие. Хромосомные транслокации (перенос участка одной хромосомы на другую негомологичную хромосому) являются основной причиной олигоспермии и наиболее часто встречаются в хромосомах 13 и 14. Транслокации у мужчин не препятствуют оплодотворению, однако в подавляющем большинстве случаев приводят к самопроизвольному патологическому прерыванию беременности у женщин, вынашивающих ребенка от такого мужчины.
Существует несколько регионов Y-хромосомы, генетические изменения внутри которых (в основном, короткие делеции) часто связаны с мужским бесплодием. Эти регионы называются AZF локусами и делятся на три типа в зависимости от фенотипических проявлений: AZFa (встречается в 0,5–4 % случаев делеций в AZF), AZFb (1–5 %) и AZFc (встречается в 80 % случаев). Комбинации микроделеций в более чем одном из описанных трех регионов также встречаются, но с очень низкой частотой. Регион AZFa несет в себе два гена USP9Y и DDX3Y, микроделеции в которых вызывают Сертоли-клеточный синдром. Регион AZFb несет в себе 32 гена нескольких семейств и ответственен за нарушение и остановку мейоза в процессе сперматогенеза, приводящую к полной азооспермии. AZFc содержит 12 генов разной степени копийности, микроделеции которых приводят к вариабельным фенотипическим проявлениям от азооспермии до гипосперматогенеза – снижения количества функциональных сперматозиодов в семенной жидкости. Микроделеции региона AZFc могут передаться от отца к сыну вследствие сохранения фертильной функции и требуют дополнительного контроля. В целом, микроделеции AZF регионов являются частой причиной олигозооспермии (более 5 % случаев) и рекомендуются к анализу у мужчин с подозрением на бесплодие.
Помимо нарушений гаметогенеза бесплодие может также иметь и эндокринные причины, то есть развиваться вследствие нарушений функций желез внутренней секреции или рецепторов к продуктам их секреции. Редкие генетические вариации в гене андрогенового рецептора AR приводят к вариабельным фенотипическим проявлениям у мужчин в виде разной степени выраженности синдрома нечувствительности к андрогенам. Сперматогенез в таких случаях может быть либо слегка снижен, нарушен или полностью отсутствовать. Гипогонадотропный гипогонадизм является еще одним редким примером нарушения функции множества генов с не до конца изученной этиологией. Фенотипические проявления заболевания варьируются, наиболее явным примером проявления является синдром Каллмана, когда процесс полового созревания не завершается. Нарушение развития первичных и вторичных половых признаков с сопряженным бесплодием являются частыми спутниками заболевания. Другим связанным с эндокринной системой заболеванием является синдром персистирующих мюллеровых протоков, вызываемый генетическими вариациями в генах антимюллерова гормона AMH и его рецептора AMHR2 и приводящий помимо прочего к азооспермии. Некоторые мутации в генах лютеинизирующего (ЛГ) и фолликулостимулирующего (ФСГ) гормонов и их рецепторов были описаны у мужчин с проявлениями гипогонадизма и азооспермии вследствие непосредственного участия ЛГ и рецептора ЛГ в сперматогенезе и формировании клеток Лейдига, продуцирующих тестостерон и другие гормоны. Функции ФСГ в контексте бесплодия мужчин пока что остаются не до конца изученными.
Моногенные заболевания (заболевания, вызываемые одной из нескольких генетических вариаций внутри одного гена) в некоторых генах также могут способствовать развитию бесплодия в виде количественных изменений сперматогенеза. Современные технологии исследований позволили связать, например, анемию Фанкони и гены FANCA, FANCM с олигоспермией, а мутации в генах TEX11, TEX14, TEX15, STAG3 – с нарушениями мейоза и олигоспермией. Качественные изменения сперматогенеза (изменение морфологии, подвижности и других функциональных параметров сперматозоидов) были связаны с генами AURKC, DPY19L2, ZPBP, PICK1, SPATA16 и DNAH1. Тестирование этих генов рекомендовано при обнаружении морфологических и функциональных изменений сперматозоидов.
Наиболее интересной причиной бесплодия у мужчин являются мутации гена CFTR, обычно приводящие к муковисцидозу. У большинства мужчин с муковисцидозом выявляется отсутствие семявыносящих протоков, что приводит к обструктивной азооспермии, то есть отсутствию сперматозоидов в семенной жидкости вследствие невозможности их транспорта из семенников. Известны случаи, когда даже незначительное снижение работы гена CFTR (например, при поломке гена только на одной из двух гомологичных хромосом) приводило к развитию обструктивной азооспермии без развития муковисцидоза.
Мутации в митохондриальной ДНК также могут приводить к нарушению фертильности у мужчин, а именно астенозооспермии – снижении мобильности сперматозоидов. Астенозооспермия является доминирующей причиной мужского бесплодия (около трети всех случаев) и связана с вариациями в генах, кодирующих некоторые транспортные РНК, расположенными в митохондриальной кольцевой ДНК.
Бесплодие часто является сопутствующим симптомом некоторых синдромов, характеризующихся широким спектром внешних проявлений. К таким синдромам относятся синдром Барде-Бидля, синдром Прадера – Вилли, первичная цилиарная дискинезия, синдром Нунан и миотоническая дистрофия.
Женское бесплодие часто описывается как недостаточность функции яичников – гипогонадизм. Как уже упоминалось выше в контексте мужского бесплодия, гипогонадотропный гипогонадизм представляет собой гетерогенную группу заболеваний, для которых на настоящий момент выявлено около 50 генов, поломки в которых ведут к развитию патологического состояния, но только менее чем для половины этих генов был найден молекулярный механизм развития заболевания.
Гипогонадотропный гипогонадизм встречается у женщин немногим реже (1:25000) чем у мужчин (1:30000). Наследование заболевания может быть как сцепленным с Х-хромосомой, так и с аутосомами.
Механизм заболевания связан с нарушением функции нейронов гипоталамуса (отдела мозга, гормонально регулирующего развитие различных органов) на ранних этапах развития организма, что влечет за собой снижение выработки гонадотропинов – гормонов, стимулирующих развитие половых желез.
Гипергонадотропный гипогонадизм отличается от гипогонадотропного чрезмерной секрецией гонадотропинов, что также вызывает нарушения функции половой системы женщин. Производство половых клеток у женщин существенно отличается от того же процесса у мужчин, а именно тем, что все ооциты (предшественники яйцеклеток) в количестве нескольких миллионов формируются на этапе эмбрионального развития, и после рождения это количество постепенно уменьшается, находясь под контролем фолликулогенеза и других процессов, уничтожающих ооциты. Скорость этих процессов может варьироваться в сторону увеличения, что иногда приводит к недостаточному количеству ооцитов к моменту полового созревания или любому моменту в течение ожидаемого периода половой зрелости. Такой феномен описывается как первичная яичниковая недостаточность.