bannerbannerbanner
Интеллект-стек 2023

Анатолий Левенчук
Интеллект-стек 2023

Полная версия

Трансдисциплины: название то же, содержание уже другое

Как соотносимся мы, любимые, физический мир вокруг нас и его модели/теории (ментальные, компьютерные и даже физические)? Слово «солипсизм» тут не надо вспоминать, волнует более насущное: вот у двух разных инженеров разные информационные модели одной и той же атомной станции – как их соотнести друг с другом? А у двух менеджеров разные версии вроде бы как одной и той же методологии управления проектами разработки софта SCRUM – как им договориться? Как мы узнаём, какие модели/теории мира верны, и можно ли вообще говорить о «верности» моделей? Опять же, речь не идёт о «научных доказательствах». Всё много прозаичней: постановка диагнозов, предсказание погоды, моделирование беспилотных автомобилей, предпринимательские гипотезы. И конфликты, возникающие у людей по их поводу, и бесконечные переговоры в попытках совместить разные варианты моделирования одной и той же ситуации. Интеллект-стек в его современном виде – это прикладное мировоззрение, ни разу не «история философии»! Так, слово «онтология» в нём ровно то же, что в 1920 году, но содержание дисциплины полностью другое!

Кто бы мог подумать, что работы E.T.Jaynes от 1998 года формально (то есть математически! доказательства с формулами!) покажут возможность вероятностного вывода/обновления по теореме Байеса из книжки 1763 года, известной в современной формулировке, сделанной Лапласом в 1812 году! И это даст мощный толчок работам в области искусственного интеллекта, и выдвижению гипотезы о том, что человеческий мозг – это именно байесовский вычислитель? Кто бы мог подумать, что работы, в которых показаны ограничения суждений о мире на основании чисто статистики (а хоть и «новомодной» байесовской, а не намертво устаревшей традиционной) будут выполнены уже в 21 веке. Ключевая работа Judea Pearl с доказательством того, что причины и следствия нельзя вывести из данных, и для рассуждений о них должны рассматриваться контрфактические рассуждения, вышла в 2000 году, пересмотрена в 2009 году и пересказана простым языком для широкой публики только в 2018 году как «Книга Почему: новая наука причины и следствия»88.

Эти идеи «причинной революции», изменившие статистику (можно после них выкидывать большинство статистических расчётов в здравоохранении, например, включая расчёты по обоснованию финансирования крупных эпидемиологических мероприятий типа локдаунов и поголовного вакцинирования), работают не только для искусственного интеллекта, но и для естественного тоже!

Эти новые идеи описывают логику науки с её гипотезами и свидетельствами/экспериментами много точней, чем все предыдущие теории науки. Заявления типа «экстраординарные заявления требуют экстраординарных доказательств» получили в том числе и своё количественное, хотя и вероятностное обоснование. Увы, хотя этому знанию аж двадцать лет, просвещённое ещё в 20 веке учёное население глобуса настолько привыкло к вековой поступи прогресса в области логики, что до сих пор не замечает эти драматические двадцатилетние изменения! 1763-1812-1998-2009-2018 – всё это были частные исследования особо яйцеголовых, «широко известных в узких кругах». Проблема в том, что это лучшее на сегодняшний день знание о том, как мыслить о причинах и следствиях – и этому знанию хотя бы в начальной форме нужно учить всех.

Теория вероятностей сегодня – это абсолютно другая теория вероятностей, чем была ещё в 2000 году! В исследованиях по машинному интеллекту байесовская теория вероятностей, байесовская наука – это уже мейнстрим, иначе бы тамошние проекты были бы безуспешны, просто не работали бы. А что фронтир? Фронтир говорит, что должна быть квантовоподобная/quantum-like вероятность, а не байесовская. У квантовоподобной вероятности есть как минимум два достоинства по сравнению с байесовской: она считается быстрее (поэтому биологические системы используют именно её), а ещё она не отбрасывает то, по чему априорные значения неизвестны, а как-то это учитывает89.

А вузовские учебные программы, если не брать программы по машинному интеллекту? Учебные программы пока не откорректированы. Но вот вы прочли сейчас об этих изменениях, вы предупреждены, вы можете принять меры по собственному образованию, образованию друзей и сотрудников.

Сообщество машинного интеллекта (именно инженеров AI интересуют вопросы мировоззренческого уровня – им нужно разобраться в них настолько, чтобы научить и развить не просто уже заведомо умных людей, а заведомо тупые компьютеры) продолжает поставлять новые знания на замену прежних «незыблемых истин». Так, успели отменить принцип «корреляция двух переменных не позволяет судить о том, изменение какой переменной является причиной изменений другой переменной». Объяснения (они ж всегда про причинность!) и доказательство влияния чего-то на что-то теперь никогда не будут прежними – но об этом пока мало кто знает. The Book of Why как раз об этом. Вы будете её срочно читать и перечитывать, или так и будете жить с допотопным пониманием причинности из 20 века? Знание причинности кардинально изменилось в мире где-то в 2009 году (научные работы, например, Judea Pearls), а «попсовый пересказ» в виде The Book of Why вышел только в 2019 году. Так что, будете читать?

Такие же интересные истории можно рассказывать про 4D экстенсионализм, который позволяет более-менее компактно записывать происходящие во времени изменения, быстро договариваться о процессах и их представлении, согласовывать понимания разных людей в моделях деятельности. Более-менее строгим рассуждениям о системах в физическом мире учат буквально в паре мест в мире, число выпускников – пара сотен человек на много миллиардов жителей Земли. Книжка Криса Партриджа BORO book90, рассказывающая об этом и рекомендуемая нами, практически неизвестна широкой публике. А ведь без неё очень трудно понимать системный подход, и трудно увязывать знания разных дисциплин о физическом мире в одно целое. При этом фронтир тут тоже поменялся, и теперь речь идёт о конструктивных онтологиях, которые части-целые представляют не как объекты в отношении часть-целое, а как конструируемые какими-то операциями объекты – и это даёт возможность думать и о частях-целых для воображаемых/математических/ментальных объектов91.

О «бизнес-процессах» трудно договориться, если не знать идеи 4D экстенсионализма, изменения ведь трудно «увидеть», видят-то люди вещи и привыкли обсуждать «вещи», процессы трудны для мышления. Книга Криса Партриджа ведь как раз об этом. Идея проста: все изменения в мире происходят от взаимодействия физических объектов-индивидов. Следовательно «процесс» определяется входящими в него вещами, изменяющимися во времени. Приходите на производство и проверяйте: входят ли окружающие люди и вещи (оборудование, материалы) в процесс – и вы мгновенно договоритесь о границах процесса, о его особенностях. Если не будете привязывать процесс к физическому миру, а наоборот, будете пытаться использовать «классификаторы» (то есть повышать, а не понижать уровень абстракции) – не договоритесь никогда, что мы постоянно и видим в жизни. При этом может оказаться, что даже несколько сот лет существующую систему двойной итальянской записи в бухгалтерии придётся переделывать, она тоже уже не современна92!

То, что системный подход помогает бороться со сложностью – это вроде как все признали. Но он сегодня по факту неизвестен: системное мышление представляется широкой публике или «систематичным» (то есть скрупулёзной проработкой всех клеточек в какой-то неведомой таблице, обходом всех веток каких-то неведомых деревьев решений), или «холистичным» с невнятными призывами тщательно думать, поскольку «всё со всем связано». Это и так понятно, что нужно тщательно думать, но как это конкретно помогает бороться со сложностью?! Ответа на этот вопрос нет, если не заглядывать в учебник современного системного мышления. Но ведь в этот учебник мало кто заглядывал! Этой дисциплине на русском языке ни в школе, ни вузе не учат! Впрочем, и на английском языке этому учат только системных инженеров, но со сложностью в проектах должны ведь совладать все! Тут нельзя думать, что можно сдвинуть всё это системное мышление на AI: без системного мышления вы ведь просто не догадаетесь задать хороший вопрос, поэтому не получите хорошего ответа. Как когда-то шутили про теорию решения изобретательских задач, «ТРИЗ помогает хорошему инженеру, а плохому инженеру не помогает», так и тут: AI как очень умный собеседник помогает другому умному собеседнику, а дураку общение с очень умным собеседником не поможет, он не догадается поговорить о важном, или просто не поймёт, что там важного в ответах, которые ему говорит умный собеседник.

 

Системный мыслитель про весь мир думает как про наборы вложенных друг в друга и взаимодействующих на каждом уровне матрёшек системных уровней – да ещё и много матрёшек в каждой, да ещё и эти матрёшки непрерывно эволюционируют. Свойства этих матрёшек на каждом уровне вложенности не совпадают со свойствами той матрёшки, в которую они вложены. И каждый уровень такой «мировой матрёшки» (верхняя матрёшка – вселенная с галактическими кластерами, нижняя матрёшка – какие-нибудь квантовые суперструны, но большинство интересного происходит на небольшом числе средних уровней физических объектов – живые клетки, организмы, космические корабли, транспортная инфраструктура Земли представляют собой очень узкий диапазон размеров) обслуживается своим экспертным сообществом, разобравшемся, как этот уровень матрёшки устроен. Понимание, как этот уровень матрёшки устроен, меняется каждые несколько лет, эволюцию знания не остановишь. Вот если у тебя есть такой «матрёшечный» взгляд на мир, и ты ещё привык сначала смотреть на ту обычно находящуюся в чужих руках матрёшку, в которую вкладывается находящаяся у тебя в руках матрёшка, и только потом раскрывать свою матрёшку-в-руках – вот тогда ты системный мыслитель. Всё остальное – бантики и рюшечки, мелкие уточнения.

Уже в самом конце 20 века при разбирательстве с этими матрёшками-системными-уровнями появилось понятие «проектная роль» (матрёшки же всегда у кого-то в руках, и они нужны им для чего-то!), и это отразило идущий в философии уже сто лет «прагматический поворот». И уже в 21 веке этот ход на прагматизм и проектные роли был довершен: жизненный цикл стал восприниматься не как набор работ, а как набор практик – деятельности людей над частями этих матрёшек, и сразу стало понятней с мультидисциплинарностью в проектах, а само системное мышление после обсуждения уже в 21 веке начало рассматриваться как часть мышления сильного интеллекта, вошло в самые разные транисдисциплины интеллект-стека.

В 21 веке системный подход опять поменялся, в 2020 году он не такой, каким был в 2000 году, а в 2000 году он не такой, каким был в 1965, в 2030 году (немного уже осталось!) он будет не такой, как сегодня.

В интернете вы увидите огромное число учебников системного мышления, написанных по идеям 1965 года (первое поколение системного мышления), а не 2020 года (второе поколение системного мышления). Но самые интересные работы физиков и биологов по системному мышлению вышли в 2021—2022 годах, и системное мышление стало мышлением третьего поколения93!

Но это полбеды. Беда в том, что призывы к изучению системного мышления есть, а массового обучения системному мышлению нет! Как будто это просто «мышление опытных людей», а не какое-то мышление, которому можно просто взять – и научить, как учат той же ньютоновской физике, или даже как в учебных программах по машинному интеллекту начинают потихоньку учить байесовской логике.

Алгоритмика была перепутана с компьютерной грамотностью, и бесконечно отстала от жизни. Основные вычисления населения идут сейчас в дата-центрах и инициируются через смартфон, но школьники продолжают учить, что «компьютер состоит из системного блока, клавиатуры, мыши и экрана». Где, где мышь в ноутбуках?! Какой алгоритм позволяет распознавать речь, мы ведь уже общаемся со смартфоном прямо голосом – без клавиатуры! По-прежнему этот гибрид пульта по вызову такси, телевизора, видеокамеры и персонального телеграфа называем «телефон», хотя звонит он уже крайне редко – общение уходит в чаты. Но как он работает? Для большинства людей на планете это чистая магия, и нет учебного предмета, который учит тому, что там происходит. Как взрывается атомная бомба – этому учим, а как переводчик Гугла переводит с фарси на испанский, и каждый год всё более профессионально, уж не хуже изучающего иностранный язык даже уже не школьника, а студента вуза – вот этому не учим, это абсолютная магия.

Алгоритмика живёт сегодня даже в сознании программистов, обученных десяток лет назад, только в виде невнятных идей. И тут ещё приходят квантовые компьютеры, которые имеют дело не с информацией в битах, а со сверхинформацией в кубитах. Об этом не могут говорить даже большинство профессиональных программистов, а с точки зрения обычных людей квантовый компьютер и вовсе шайтан-машина. Но ведь квантовый компьютер намерен быть ровно той шайтан-машиной, которая резко усилит совокупный интеллект человечества. Мы будем учить школьников в школе ньютоновской физике в подробностях, или расскажем хотя бы «на пальцах» принцип работы квантового компьютера? Вообще, кто и где будет давать понятие вычисления в общем виде в учебных программах? И программирование: как говорит Karpathy, самый модный язык программирования сегодня – английский, а программировать надо нейронные сети, настраивать на конкретную задачу универсальные алгоритмы (и это программирование собственной нейросети, программирование нейросети AI, программирование нейросетей ваших друзей и сотрудников и даже программирование коллективной нейросети вашей организации, которая состоит из нейросетей сотрудников и нейросетей в её софте). Современному человеку неплохо бы хоть как-то быть знакомым с происходящим, чтобы не оказаться в мире магии, где надо знать точное заклинание, чтобы вызвать демона из системы искусственного интеллекта, и дальше демон продемонстрирует чудеса, недоступные для понимания.

Если мы хотим, чтобы население как-то справлялось со сложностью окружающего мира, то нам нужно обучать это население (от школьников до профессоров) современным мыслительным трансдисциплинам. Обучать явно, быстро и эффективно. Мыслительные трансдисциплины ни разу не сухая теория, они практичны, они организуют продуктивную деятельность, они поддержат коллективное мышление.

Увы, тут нужно написать, что польза современных трансдисциплин «потенциальна», а не «актуальна». Актуально польза трансдисциплин проявится только тогда, когда понятизация, собранность, семантика, математика, физика, онтология, алгоритмика, логика и так дальше по всему интеллект-стеку в его современной версии, овладеют массами. Не массы овладеют сильным мышлением, а сильное мышление массами, тут должно быть без иллюзий – массы должны быть завоёваны этим мышлением, сами массы добровольно овладевать новым мышлением не будут. Ждать этого овладения можно долго. Чтобы ускорить процесс, массы системному мышлению нужно учить. Ага, «жалеть и учить, жалеть и учить».

Можно говорить о том, что миру надо дать коллективный иммунитет от глупости94. Ибо каждая новая версия интеллект-стека (он меняется ежегодно! Прогресс неостановим!) означает, что владеющие этой версией люди и машины (AI) умней, чем владеющие предыдущими версиями интеллект-стека. То есть эти агенты умнее, в буквальном смысле этого слова.

Так что вам придётся напрячь расслабленный поп-культурой мозг: это привет из вашего завтра, где конкуренция не даст скидки на неграмотность. Миром начинают править удивительно крепко подкованные в «технарском» мышлении люди. Они не ходят в костюмах, они ходят в футболках, а гуманитарии у них на службе и на их содержании.

Основная причина, почему скоропостижное обучение на «трёхдневных курсах» непрерывно появляющимся новейшим прикладным практикам типа TameFlow в менеджменте или Jobs-to-be-done в инженерии не помогает – отсутствие фундаментального образования в части трансдисциплин, то есть отсутствие мастерства рассуждать правильно (логика!), координировать свои действия с другими людьми (методология!), управлять вниманием (собранность! со времён изобретения йоги и даосских медитаций в этой предметной области тоже немало произошло, в том числе за последние двадцать лет), строить модели (семантика, онтология, рациональность!) и вычислять по этим моделям (алгоритмика!), давать оценки применимости этих моделей (исследования!), точно выбирать тот кусок мира, для которого строится модель и разворачивается вся деятельность (системная инженерия!), занимать свою роль в разделении труда (методология!), вовремя замечать неадекватность своих действий и исправлять ошибки мышления (логика!), не вредить при этом (этика!) … этот список можно продолжать и продолжать, и этому нужно учить со школы, в явном виде.

Пока же мы имеем даже в лучших учебных заведениях образование от педагогов-геронтократов. Геронтократов не по своему возрасту, а по возрасту тех замшелых идей, которые они выучили от своих преподов, а те от своих. Педагогика/андрагогика/хьютагогика (включая тех инженеров и менеджеров, которые вдруг начали преподавать) сегодня преподаёт не state-of-the-art трансдисциплин, педагогика преподаёт традицию, догму предыдущих веков – никогда не преподаётся предмет, по факту преподаётся история предмета. Вот как философия: философствовать никто не учит (да это и не нужно никому!). Зато учат истории философии, вставили это в образовательные программы в обязательном порядке!

То же самое безумное отставание обучения от жизни происходит с любым предметом. Пустите инженера преподавать инженерию: он, как генерал, который всегда готовится к прошедшей войне, будет учить студентов разбираться с допотопными конструкциями, будет «история инженерии». Это счастье, если где-то в этой истории доходят до науки, инженерии, искусства конца 20 века. Но с конца 20 века прошли уже десятки лет! «За время пути собачка могла подрасти»!

Мировоззрение как текущий интеллект-стек всё-таки более-менее стабильно, оно существенно меняется за пару десятков лет. Это прикладные практики меняются каждые 4—5 лет, в соответствии с циклом хайпа Гартнер95, в соответствии с ритмом смены информационных технологий, в соответствии с ритмом инвестирования во множество стартапов по всему миру. Фундаментальное знание трансдисциплин живёт дольше, на него можно опереться.

Но нельзя опираться на своё фундаментальное образование больше пары десятков лет! Если вы более-менее выучились мыслительному мастерству к 22 годам, то в 42 года обязательно нужно учиться снова, и содержание вашего образования будет другим! Если вы вот прямо сейчас пройдёте наш курс с очень кратким описанием пока ещё наисвежайшей версии трансдисциплин интеллект-стека, сделайте пометку в календаре – пройти его ещё раз через пяток лет! Хотя сейчас всё так быстро меняется, что и три года тут может быть более полезным предложением. Трансдисциплины меняются так же быстро, как и любые другие прикладные дисциплины, это нельзя игнорировать.

Современное мировоззрение основной массы населения земного шара насквозь мифологично. Старинная аристотелевская логика – допотопный миф, давно заменена математической логикой. Старое системное мышление, в котором не было ещё людей в их разнообразных проектных ролях – антикварный миф. Старая алгоритмика, в которой ещё не было квантовых компьютеров – древний миф. Новой рациональности нужно учить всё население, от школьников до маститых учёных – хотя учёных будет учить ещё сложней, им очень трудно принять роль ученика! Макс Планк ещё замечал: «Не следует думать, что новые идеи побеждают путем острых дискуссий, в которых создатели нового переубеждают своих оппонентов. Старые идеи уступают новым таким образом, что носители старого умирают, а новое поколение воспитывается в новых идеях, воспринимая их как нечто само собой разумеющееся»96.

 

Мрачно пошутим, что ситуация с этим только ухудшилась. Никакого застоя в науке нет, по сравнению со временами Макса Планка всё только ускорилось, но зато есть увеличение продолжительности жизни носителей старых научных идей и увеличение их бюджетов за счёт денег налогоплательщиков. А поскольку речь идёт не больше и не меньше, как о мировоззрении, о мыслительных трансдисциплинах, то тут холивары могут идти столетиями. Это вам не смена теории флогистона теорией кислородного горения97 буквально за несколько десятков лет!

Так что мы в 20х годах 21 века попали во что-то типа интеллектуального средневековья, только со смартфонами и искусственным интеллектом. Попытки заглушить телеграм и твиттер в самых разных странах, выпустить единый набор учебников для школьников всей страны как раз из этого разряда: все всё понимают, но против современной инквизиции ничего поделать нельзя – рациональные аргументы не работают, когда сознание широких масс (включая законодателей!) насквозь мифологично.

Ошибки не в самой политике, а ошибки в мышлении, в незадействовании современный версий мыслительных дисциплин для выработки политических решений. Рациональность, которая вроде как была обретена человечеством в целом, оказалась эфемерным достижением – её вроде как уже и нет, просвещённые на базе старинных версий трансдисциплин и непросвещённые вообще без задействования трансдисциплин интеллект-стека мнения оказываются одного примерно качества, дикарского.

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48 
Рейтинг@Mail.ru