Эволюция заключается в бесконечном развитии, open endedness61, в выходящем на множество различных масштабов вещества и масштабов времени непрерывном познании62. Эволюция глубоко физична, по мере эволюции растёт сложность эволюционирующих систем63 и появляется всё более и более сильный интеллект.
Умность/интеллектуальность появляется в ходе эволюции как раз как средство для ускорения бесконечного развития, для бесконечного прироста видов мастерства агентов (животных, людей, а дальше технических систем и гибридных коллективов из людей и оборудования, включая датацентры с AI), бесконечного прироста в классах проблем, которые научилось решать человечество как коллективный агент. Интеллект невозможные ранее задачи (типа полёт по орбите в космосе вокруг Земли или общение по видеосвязи) превращает во вполне решаемые.
Проекты, где требовались наборы старых навыков и умений большинства людей, старое мастерство, стремительно теряют актуальность – к ним прилетают «сбоку» (из других отраслей) подрывные технологии, и эти проекты заканчиваются. Телеграф вдруг исчезает, и людям с мастерством телеграфиста нужно вписываться в новые проекты, отращивать себе новое современное мастерство – самое разное, часто никак с телеграфом не связанное. В этот момент никакой интеллект им не будет лишним, ибо сила интеллекта определяет скорость обучения новому мастерству. Если интеллект низкий, то к моменту достижения нужного уровня мастерства нужда в этом виде деятельности может отпасть. Если интеллект у человека высокий, то обучение новой деятельности пройдёт быстро, и останется ещё время это мастерство использовать (а потом всё равно нужда в этом виде деятельности отпадёт).
Интеллект тем самым проявляется на задачах, которые не встречались в момент его создания – неизвестны ни самому интеллекту, ни создателю или этого интеллекта (если речь идёт об аппаратуре – мозге людей или программно-аппаратном комплексе AI), ни учителю этого интеллекта (если речь идёт о предобучении аппаратуры – и людей, и AI). Родители не знают, с какими проблемами в ходе бесконечного развития столкнётся их ребёнок, учителя не знают, с какими проблемами столкнётся их ученик, разработчики робота не знает, с какими проблемами столкнётся их робот.
Замерять решение человеком или компьютером (или многими людьми со многими компьютерами) задач какого-то одного узкого класса, чтобы определить силу их интеллекта – неправильно. Нужно замерять способности (broad abilities) к освоению новых предметных областей, то есть скорость приобретения мастерства/skills в решении проблем в этих предметных областях.
Беря за основу вот эту диаграмму, François Chollet предлагает определять следующие уровни интеллекта по линии универсальности проблем/задач, которые он может научиться решать:
• полное отсутствие интеллекта: точно заданные образцы задачи. Заполнение точно известной компьютерной формы значениями, которые берутся из точно известных мест. Переноска заготовок от одного определённого станка к другому определённому станку.
• локальная генерализация aka robustness: обработка точки в более-менее плотно заданном вероятностном распределении задач – adaptation to known unknowns within a single task or well-defined set of tasks. Заполнение анкет разной формы (все возможные формы анкет известны заранее). Переноска заготовок между разными станками (между какими – известно заранее). Это подмастерье.
• широкая генерализация aka flexibility: разработчик/учитель этого не предвидел, решение широкого класса задач – adaptation to unknown unknowns across a broad category of related tasks. Заполнение анкет как таковое, самых разных форм и содержания. Переноска заготовок между всевозможными станками, и не только станками, по потребности. Это мастер, он сориентируется по обстоятельствам.
• экстремальная генерализация aka generality: как у человека – adaptation to unknown unknowns across an unknown range of tasks and domains. Умею заполнять анкеты, переносить заготовки. Вдруг потребовалось управлять синхрофазотроном – это не «задача», это уже проблема! Попотел, но смог научиться. Это талантливый человек, «интеллектуал» (у него сильный интеллект, если научился быстро! Или не очень сильный, если научился, но медленно).
• универсальность: генерализация на уровне большем, чем человек – any task that could be practically tackled within our universe. Во вселенной есть много проблем, которые человеку и в голову не придут, он с ними не столкнётся. Но интеллект уровня выше человеческого сможет научиться решать и эти задачи, сможет выработать нужные для этого знания, умения, навыки, скиллы, мастерство. Это люди со всеми их компьютерами, а потом сверхлюди (мы не знаем, как люди смогут модифицировать себя, когда они решат текущие проблемы биологического старения и смерти, ограничений в биологическом восприятии текущих органов чувств, ограничений в ловкости и силе текущего человеческого тела).
Машинный/искусственный/компьютерный интеллект сегодня в целом решает задачи локальой генерализации/robustness, то есть разбирается в узких предметных областях. Это огромный прорыв по сравнению с тупым роботом, выполняющим заданные операции в заданной последовательности только с определёнными предметами, и даже не классами этих предметов.
Chollet (и ещё множество лидеров AI) призывает решать проблемы, появляющиеся при широкой генерализации/flexibility.
Примерно это же имеют в виду люди, когда говорят о каком-то классе человеческого интеллекта: эмоциональный интеллект (интеллект, разбирающийся с самыми разными проблемами, связанными с эмоциями – что вы будете делать, когда вас захватывает эмоция, с которой ранее вы не встречались?), коммуникационный интеллект (интеллект, который может справиться с огромным разнообразием проблем, встречающихся в коммуникации – будь то в переговорах трёх конфликтующих групп, или даже в разговоре с самим собой), математический интеллект (интеллект, который способен справиться со всевозможными математическими проблемами), и так далее. По факту, это не столько «проблемы» (которые никто не знает, как решать), сколько задачи, которые можно успешно решать, если использовать уже известные людям сегодня знания. Ну, и это бытовая речь: мало что изменится, если заменить «интеллект» на «мастерство»: эмоциональное мастерство, коммуникационное мастерство, хотя вот математическое мастерство уже попадает в серую зону: профессиональные математики, конечно, имеют прикладное математическое мастерство (значительная часть выпуска университетских математиков уходит работать в страховые компании и банки, где они занимаются актуарными расчётами64), но всё-таки математики формулируют проблемы и находят новые способы их решать, речь всё-таки идёт именно о математическом интеллекте как решателе проблем (интеллект находит способ решения какого-то класса задач, который непонятно как решать – умение/мастерство решения этих задач является результатом его работы). Так что в случае математического интеллекта наше онтологическое чутьё подсказывает, что это всё-таки что-то другое, чем математическое мастерство. В случае кулинарного или эмоционального мастерства наше онтологическое чутьё молчит, мы понимаем, что бытовой язык тут волен использовать какие угодно слова «для красивого словца».
AGI (artificial general intelligence, искусственный универсальный интеллект) – так называют дисциплину инженерной практики создания небиологического вычислителя для мышления. Нынешняя цель AGI – создать интеллект широкой генерализации/flexibility, в котором он потенциально может выработать мастерство в решении тех же проблем, которые мог бы научиться решать биологический человек, а не кошка или какое другое животное. Обратите внимание на формулировку, включающую в себя возможность относительно бесконечного развития: речь идёт не об умении специализированного на каком-то классе задач «искусственного мастерства» решать задачи так же, как обученный этому человек. Эта формулировка про «такое же решение задач» не включает в себя развития. Формулировка про «мог бы научиться решать человек» включает в себя бесконечное развитие, есть ещё множество проблем, которые люди ещё не научились решать, и о которых, возможно, ещё они не знают – но можно ожидать, что они это делать научатся (с помощью компьютеров, или без них).
Насколько это развитие бесконечно? Понятно, что человек сам по себе может научиться решать только конечное число классов задач. Но вместе с AI он может изменить и свою биологическую природу, и техническую природу AI (скажем, сегодня ожидается резкий скачок в скорости вычислений при переходе к универсальным алгоритмам на квантовых компьютерах). Плюс учиться решать задачи может человек не только в одиночку, но и целой группой, а хоть и целым человечеством – наука и производство сегодня глобальны, в них участвуют люди по всей планете плюс огромное количество оборудования/аппаратуры и компьютеров.
Статья о бозоне Хиггса вышла с 5154 авторами65, столько людей приняло участие в решении этой задачи. Статьи, в которых расшифровывается геном каких-то организмов, у биологов выходят с числом авторов больше тысячи. Интеллект как свойство научиться что-то делать новое/решать новые классы/виды задач существует не только у отдельных людей, но и у каких-то коллективов, в том числе включающих в себя людей и компьютеры, в том числе и у всей цивилизации в целом вместе со всем возможным оборудованием. Да, если брать все вычисления человечества, то можно говорить о совокупном интеллекте человечества! Интернет позволяет легко собрать вычислительные мощности и людей, и компьютеров, а потом после решения проблемы предоставить результаты огромному числу других людей и компьютеров, вновь найденное мастерство быстро распространится по планете.
Цель всей деятельности по усилению интеллекта как людей, так и машин – создать сверхчеловеческий универсальный интеллект за пределами человеческой экстремальной силы/универсальности/генерализации/generality. Такой интеллект сможет решить те классы задач, которые человечество пока не научилось решать. Такой интеллект экстремальной силы/универсальности не только сможет помочь людям стать биологически бессмертными, наладить межпланетные и межзвёздные путешествия (это задачи, которые нам могут прийти в голову прямо сейчас), но и в рамках бесконечного развития сможет поставить интересные проблемы, чтобы их решать и тем самым продолжить эволюцию за пределы чисто человеческой мечты. Особо обратим тут внимание, что универсальный машинный интеллект тут не представляется обязательно антропоморфным/парохиальным/земным, также не предполагается «видовое противостояние» между «биологическим видом человека» и «технологическим видом AGI». Нет, мы считаем, что люди друг с другом, а теперь и с компьютерами живут в симбиозе. Но оставим эти рассуждения философам.
Конечно, как любая сложная система (помним, что интеллект мы рассматриваем как мастерство познания в незнакомой ситуации) интеллект имеет ещё множество других характеристик кроме общности. Из наиболее интересных тут являются характеристики вменяемости/persuadability как мера изменений, нужная для рационального изменения поведения системы66. Невменяемые часы придётся переделать, кошку можно надрессировать, а людям (и вот сейчас AI) можно что-то сказать – и они изменят поведение. Дальше по этой линии идёт обсуждение prompt engineering67 и даже нейролингвистического программирования/neuro-linguistic programming68 (при этом обращение нейролингвистического программирования к «бессознательному» сегодня считают просто учётом характера человеческой нейросети, распознающей какие-то паттерны и реагирующей на эти паттерны).
Основные отличия человеческого интеллекта от машинного интеллекта представлялись ещё несколько лет назад ровно в степени его общности/универсальности/generality, поэтому отсылка к интеллекту, который «такой же умный и вменяемый, как человек» обозначалась как artificial general intelligence. Сначала считалось, что general – это примерно «умный как человек-школьник». Поэтом незаметно стало считаться, что это «умный как средний человек», потом – «умный как средний профессор», потом – «умнее человека». После чего оказалось, что технология больших языковых моделей даёт достаточную степень общности в предметных областях (но не в типах решаемых проблем!), чтобы вот это AGI превратилось в просто AI как указание на «машинное происхождение». Заодно оказалось, что AI при помощи технологии больших языковых моделей69 не учится действовать в мире как Маугли, взаимодействуя с теми объектами окружающего мира, что случайно встретятся в природе. Нет, познание мира большими языковыми моделями проходит так же, как у людей: их «насильно встречают» с описаниями самых разных частей мира, имеющихся в текстах. Грубо говоря, большие языковые модели учатся так же, как и люди – «в школе, в университете, читая книжки». Люди и AI для получения своего интеллекта «с нуля» знакомятся с огромным объёмом книжного знания, а не просто ощупывают и осматривают окружающий мир. Разница только в том, что AI знакомится с огромным объёмом текста «по всем наукам», а человек знакомится с небольшим объёмом текста по избранным предметам, а потом добирает специализации в конкретной предметной области уже после вуза и школы.
Мы хотим специально организованным предобучением примерно бакалаврского уровня усиливать человеческий интеллект, повышая степень его широкой универсальности/генерализации/flexibility, хотя это на ступеньку меньше, чем «теоретическая» человеческая экстремальная универсальность.
При этом мы не будем забывать о ходе на универсальность через симбиоз человека с компьютерами, то есть ходе на киборгизацию, включение экзокортекса. Скажем, человек обладает биологически плохой памятью и в силу этого сниженным интеллектом – но ведение дневника даже на бумаге и тем более в компьютере поможет помнить много и неограниченно долго. Библиотека с полнотекстовой поисковой системой ещё лучше решает проблему с памятью. Человек медленно умножает десятизначные числа – инструмент-калькулятор ему в этом поможет, а программируемый калькулятор как внешний вычислитель (инструмент!) и подавно. Человек с книгой и калькулятором сможет научиться решать задачи, требующие памяти и вычислений быстрее, чем человек без книги и калькулятора. Человек с книгой и калькулятором тем самым будет умнее человека без книги и калькулятора. А человек с современным даже не компьютером, а дата-центром умнее, чем человек с книгой и калькулятором. А группа людей со множеством дата-центров вообще оказывается умнее всех одиночек с компьютерами. Вы поняли идею: мы не верим в усиление чисто человеческого интеллекта, поэтому предобучать будем сразу людей с их компьютерными экзокортексами. Отдельный вопрос, что тут происходит с вменяемостью: если группе людей дать много разных инструментов (например, баллистических ракет с ядерными боеголовками), то вероятность того, что вы рационально уговорите их изменить своё поведение, неожиданно может снизиться, а не увеличиться.
Chollet даёт вот такую диаграмму, определяющую интеллект:
По этой функциональной диаграмме интеллект/интеллектуальная система создаёт умение что-то делать как отдельное мастерство/умение/прикладное_знание/«программу скилла», и уже это мастерство/умение решает каждую отдельную задачу, потихоньку превращаясь в нетрудный для выполнения навык («автоматизируясь» через большое число повторений, уходя в бессознательное и освобождая ресурс внимания). Интеллект – это вычислитель со способностью выработать мастерство/умение, переходящее постепенно в навык, то есть исполняющееся без сознательного к нему внимания. Не можешь чему-то научиться за приемлемое время – это тебе не хватает интеллекта, какого-то входящего в состав интеллекта мыслительного мастерства!
Котёнок может быть очень умным для котёнка, но не способным научиться играть на рояле. Поэтому у котёнка мы считаем интеллект слабым по сравнению с человеком (но сильным по сравнению с рыбой). Если человек оказывается неспособным научиться играть на рояле, неспособным научиться математике, неспособным научиться операционному менеджменту, и так далее по всем видам задач – мы его не будем считать очень умным, откажем ему в интеллекте. Люди-мнемоники в цирке умеют в уме умножать десятизначные цифры, в этом они не хуже калькулятора. Или помнить бессмысленный длинный текст, не хуже книжки. Мы их не считаем особо умными, если они не демонстрируют, что они могут выучиться чему-то ещё. Калькулятор или книжку мы не ценим за их интеллекты.
Если человек постоянно демонстрирует способность освоить какую-то новую предметную область (универсальность! Сила интеллекта в его универсальности: скорости освоения самых разных новых задач!), поднимая и поднимая сложность решаемых им проблем, мы говорим, что у этого человека сильный интеллект. Если человек научился решать один класс задач, но не в состоянии выучиться чему-нибудь ещё, интеллект его будет считаться слабым (неуниверсальным! Малая скорость освоения нового, времени на новое требуется столько, что жизни не хватает!) – независимо от того, насколько сложны те немногие задачи, которым этот человек смог научиться. Этот человек может считаться уникумом, артистом цирка, рекордсменом Гиннеса – но не обладателем сильного интеллекта.
Интеллект связан с универсальностью в части классов решаемых задач и скоростью обучения их решать, а также с вменяемостью как способностью изменять своё поведение рациональным образом на основе получения информации из текста (речи, книги, выдачи компьютера). Единственный способ подтвердить интеллект – это демонстрировать, что ты научаешься решать всё более и более сложные новые проблемы, а также внимаешь рациональным аргументам для изменения своего поведения. Например, научиться арифметике, потом высшей математике, потом инженерным вычислениям, потом вычислениям универсальных алгоритмов, и так далее – до бесконечности усложняя и меняя виды проблем, классы задач и исправляя ошибки, если на них тебе указывают. Если ты просто демонстрируешь решение одного класса задач, вновь и вновь решая арифметические задачи и не двигаясь дальше, не исправляя ошибки и не реагируя на аргументы, то интеллект не будет задействован, он так и будет считаться слабым, «достаточным только для арифметики» и «механическим в своих проявлениях» по линии вменяемости.
⠀
Сам Chollet предлагает шкалу универсальности в решении разных классов проблем как силы интеллекта использовать для оценки систем сегодняшнего машинного/искусственного интеллекта. Люди не работают голыми мозгами в разработке чего бы то ни было, они задействуют компьютеры – системы автоматизации проектирования, программы имитационного моделирования, нейронные сети как универсальные аппроксиматоры и т. д. В своей работе по измерению силы интеллекта Chollet выделяет такие подсмотренные у человеческих младенцев элементарные функции как
• умение выделить объект по связности в его представлении в окружающем мире,
• отслеживать этот объект в мире при его перемещениях,
• отслеживать влияние объектов друг на друга,
• умение преследовать какую-то цель,
• умение считать,
• какие-то умения в области геометрии и топологии – типа распознать симметрию в объекте, или выделить прямую линию или прямой угол.
⠀
Эти врождённые способности как частное мыслительное мастерство (а интеллект, как мы помним, состоит из широких/трансдисциплинарных способностей!) и составляют по его мнению «аппаратную» основу человеческого интеллекта, остальному люди учатся с использованием этих врождённых способностей. Другие исследователи соглашаются, что какие-то функции у человека как носителя сильного/широкого интеллекта реализованы аппаратно лучше и связывают их со сложной структурой мозга, которая оказывается связана ещё и с генами, кодирующими microRNA70. Геном – это тоже «софт», который «исполняется», приводя к разворачиванию полноценного человеческого мозга (или осьминожного мозга, хотя там интеллекта меньше, но больше, чем у мозга тараканов – аппаратура таки важна!). А затем на этой аппаратуре реализуются те или иные «виртуальные аппаратуры», алгоритмы интеллекта. Как любят повторять специалисты по компьютерным архитектурам, «граница между программным и аппаратным обеспечением обычно размыта».
Мы согласны с Chollet, что у выросшего в цивилизованном мире человека интеллект состоит из:
• врождённых способностей/мыслительного мастерства, которые «аппаратно» имеются в мозгу человека и определяются генетически, являются результатом биологической эволюции. Эти врождённые способности могут быть использованы как основа для дальнейшего усиления интеллекта через предобучение трансдисциплинарным рассуждениям. Простые тесты из набора IQ должны быть связаны именно с врождёнными способностями, хотя на деле это и не соблюдается. Врождённые способности определяются генетически, и не так много можно сделать, чтобы их усилить обучением, хотя мозг пластичен и в какой-то мере может менять свою структуру для упрощения решения каких-то часто встречающихся задач. Кошку не научишь читать, сколько ни учи, речь об этом. Человека тоже научить можно явно не всему. В любом случае, речь идёт об интеллекте, именно поэтому про детей с большим IQ говорят «талантливый в одном будет талантлив и в другом», это прямо совпадает с определением сильного интеллекта: «универсальный талант», а не «талант к одному классу задач». Это и есть тот самый «фактор G», фактор самых общих способностей к обучению, доступных человеку. Дальше можно обсуждать, насколько это должно сопровождаться какими-то другими наследуемыми способностями. Например, усидчивость оказывается связана с талантом71: кому-то скучно потратить на какое-то действие 10 часов, а кому-то нет – и вот этот второй при том же интеллекте вдруг получает дополнительное преимущество, его нейронная сетка научится что-то делать лучше при той же аппаратуре, и это тоже наследуемое свойство!
• Выученных/приобретённых способностей/мыслительного мастерства, получаемых предобучением каким-то трансдисциплинам. Приобретённое мыслительное мастерство отличает людей с хорошим образованием от людей с плохим образованием: они оказываются «более талантливыми» (потому как правильно образованы, а не потому образованы, что оказались более талантливы!). Люди с хорошим образованием могут потом выполнить быструю подстройку своих знаний под новый проект, быстро освоить новое мастерство, разобраться с новым делом. А то и без подстройки: если окажется, что речь идёт об использовании каких-то универсальных умений (трансдисциплин), то и без подстройки можно справиться. А с плохим образованием люди тоже могут разобраться с новым делом, но это происходит медленно, их интеллект слабей. Почему медленно? Потому что им приходится не просто подстраивать свои знания, им приходится ещё для этого и дополнительно предобучаться, часто очень неоптимальным образом, без использования трансдисциплин как накопленного цивилизацией опыта предыдущих поколений. Представьте, что взрослый дикарь приехал из джунглей, где он только охотился и собирал растения. Сколько времени ему нужно потратить, чтобы стать инженером? Он даже в вуз пойти сразу не сможет, ведь у него не будет даже школьных знаний! Речь сразу идёт о многих годах, которые люди тратят на обучение трансдисциплинам. Это ничем не отличается, по большому счёту, от обучения нынешних версий AI, которых сначала долго и много учат «в школе», чтобы получить «большую языковую модель» (large language model, это обучение pretraining), затем обучают их более узким предметным областям (это finetuning), и только затем уже обучают совсем узким условиям ситуации, давая им какое-то задание с подробным описанием (in context training, prompt engineering).
Отдельно нужно обсудить: а можно ли вот так накапливать знания, передавая их от чему-то самостоятельно научившихся людей и AI к ещё не научившимся, да ещё и не лично, а через главным образом разные тексты с редкими картинками (даже не видео)? Можно ли целенаправлено провести «предобучение» для людей, грубо говоря, не заставлять их сразу «жить и работать», а обучая в школе и вузе? Или же каждый человек должен накапливать все знания «на опыте жизни», как-то самостоятельно? Были проделаны эксперименты, показывающие, что передача знания от поколения к поколению вполне возможна, и эта передача идёт на естественном языке, которого оказывается вполне достаточно. Необязательно учиться всему «с полного нуля», набивать себе собственные шишки на собственных неудачах, теряя на это много времени, можно получить опыт современников или даже предыдущих поколений из культуры, в том числе получить нужное знание через текст72 – и сразу начинать приобретать новый опыт, которого ещё не имели предыдущие поколения исследователей мира, предыдущие поколения инженеров, менеджеров, предпринимателей. И ровно то же самое происходит с искусственным интеллектом, все современные «умные чат-боты» учатся на огромных наборах текстов прежде всего.
В принципе, огромное число проблем можно решать просто методом перебора разных вариантов решения (оставим вопрос о качестве воображения, чтобы предлагать достаточное число и разнообразие вариантов). Этот метод перебора называется методом проб и ошибок. Это основной метод работы многих и многих людей, tinkering/возня как в «он возится с автомобилем», это подчёркивается в книге Нассима Талеба «Антихрупкость». Но возня/«метод проб и ошибок» срабатывает увы, за огромное время и с потреблением огромных материальных ресурсов. Ещё ведь придётся найти то, что нужно будет перебирать, заранее ведь это тоже неизвестно – и перебирать приходится по огромным цепочкам создания. Вы бы догадались, что антибиотики помогают против бактерий в те времена, когда само понятие бактерии было ещё неизвестным? Проблема поиска антибиотиков не могла быть даже поставлена! Догадались бы, что надо использовать радиотриод в качестве логического элемента в вычислительной машине времён Бэббиджа, чтобы получить электронно-вычислительную машину, а не механо-вычислительную или пневмо-вычислительную? Время «возни» можно резко сократить, если возиться с какими-то уже известными из культуры предметами (например, «возиться с микропроцессором», а не возиться с очищенным кремнием в надежде, что в итоге этой возни появится какой-то компьютер, или возиться с разными сортами стали, в надежде, что когда-то из этой возни появятся огромные стальные ракеты Starship и Super Heavy. Нет, «с чем возиться» в методе проб и ошибок тоже зависит от уже накопленного человечеством знания.
Многие сегодняшние проблемы не могут быть решены сегодняшними плохо сконструированными (а эволюция ведёт к отнюдь не оптимальным «врождённым» решениям по части интеллекта73!) и плохо обученными (образование в мире отнюдь не идеально) людьми и машинами. Так что нужно усиливать интеллект, чтобы продолжать эволюцию (как техно-эволюцию, так и биологическую) и исправлять замеченные ошибки.
Представьте, например, что мы ещё не знаем, что такое «свет», а ведь первые микроорганизмы этого не знали! Или не знаем, что такое спин74 (который используется в спинтронике75), про который догадались только в 1924 году, меньше ста лет назад. Если мы мало знаем о структуре мира, то требуется огромное время интенсивных выходящих в мир для проведения экспериментов рассуждений, чтобы узнать о каких-то проблемах, а затем их решить. И ещё надо узнать о правилах рассуждений, которые ведут к рассуждениям без ошибок, логика у человечества тоже прошла долгий путь развития.
Если мы хотя бы частично что-то знаем о структуре мира (всегда частично, всегда мало, даже через десять тысяч лет это будет «частично» и «мало», развитие бесконечно!), это бы в десятки, тысячи, миллионы раз уменьшило количество вычислений/мышления интеллекта по выработке мастерства в решении связанного с этой особенностью структуры мира класса задач.
Скажем, какую-то проблему мы можем решить человеческим мозгом за десять тысяч лет интенсивных размышлений. Это побольше, чем время существования человеческой цивилизации. Но если мы сделаем какие-то удачные догадки/гипотезы/guesses/предположения о структуре задачи и её предметной области, и они снизят объем вычислений в десять тысяч раз, то проблема будет решена всего за год. И можно будет переходить к следующим, более сложным проблемам.
Ускорение в десять тысяч раз по сравнению с «вознёй» возможно? Бывает ли ускорение на порядки величины по сравнению с «обычной скоростью решения задач»? Да, бывает! Так, квантовые компьютеры уже в определённых классах алгоритмов несравнимо (на много порядков величины) быстрее классических компьютеров, и это квантовое превосходство/quantum supremacy76 быстро увеличивается. Или в 2021 году было предложено ускорение на несколько порядков скорости обучения игры в видеоигры для алгоритмов обучения с подкреплением, и были достигнуты скорости обучения примерно такие же, как у человека. Буквально десяток лет назад речь шла о проблеме, которая вообще не решалась, компьютер не мог обучаться игре в видеоигры! Потом мог обучаться, но требовались огромные вычислительные мощности, и дело было хуже, чем у человека примерно в десять тысяч раз, требовался суперкомпьютер. И вот задача решена предложением нового алгоритма, использующего догадки о структуре знаний при игре77.
Цивилизация (и особенно в ней наука, она ровно этим и занимается) даёт нам разной степени удачности общие предположения о структуре абстрактного (математические объекты) и физического мира и учит формулировать проблемы. Это приобретённый, выученный интеллект: он позволяет решать задачи в десятки тысяч (а то и более) раз быстрее, чем это могло бы быть сделано необученным структуре окружающего мира интеллектом как «аппаратной» частью мозга «дикого» человека, не получившего образования. Цивилизованный человек, мозг, интеллект (это всё вложенные части, в быту мы используем все выражения) – это обученный, образованный человек, мозг, интеллект. Цивилизованный интеллект (мозг, человек) содержит в себе не только врождённые мыслительные способности, врождённое мыслительное мастерство, но и приобретённое/выученное. Интеллект цивилизованного человека оказывается не таким уж естественным: часть его «аппаратна», но часть «программна», прошита цивилизацией в мозгу – это ничем не отличается от любого другого вычислителя. Интеллект смартфона тоже есть врождённый (аппаратный, от микропроцессора конкретной марки), а есть приобретённый – от прошивки производителя, и от конкретного мастерства его прикладных программ. Другое дело, что интеллект смартфона очень слабый, ибо микропроцессор его очень ограниченной производительности, даже с учётом того, что в современных моделях смартфонов используются аппаратные ускорители для нейросетей, да ещё и алгоритмы прошивок абсолютно не универсальны в части возможности решения разных классов проблем.